The Mission of Duke University

James B. Duke’s founding Indenture of Duke University directed the members of the University to “provide real leadership in the educational world” by choosing individuals of “outstanding character, ability and vision” to serve as its officers, trustees and faculty; by carefully selecting students of “character, determination and application;” and by pursuing those areas of teaching and scholarship that would “most help to develop our resources, increase our wisdom, and promote human happiness.”

To these ends, the mission of Duke University is to provide a superior liberal education to undergraduate students, attending not only to their intellectual growth but also to their development as adults committed to high ethical standards and full participation as leaders in their communities; to prepare future members of the learned professions for lives of skilled and ethical service by providing excellent graduate and professional education; to advance the frontiers of knowledge and contribute boldly to the international community of scholarship; to promote an intellectual environment built on a commitment to free and open inquiry; to help those who suffer, cure disease and promote health, through sophisticated medical research and thoughtful patient care; to provide wide ranging educational opportunities, on and beyond our campuses, for traditional students, active professionals and life-long learners using the power of information technologies; and to promote a deep appreciation for the range of human difference and potential, a sense of the obligations and rewards of citizenship, and a commitment to learning, freedom and truth.

By pursuing these objectives with vision and integrity, Duke University seeks to engage the mind, elevate the spirit, and stimulate the best effort of all who are associated with the University; to contribute in diverse ways to the local community, the state, the nation and the world; and to attain and maintain a place of real leadership in all that we do.

Adopted by the Board of Trustees on February 23, 2001.
The information in this bulletin applies to the academic years 2005-2007 and is accurate and current, to the extent possible, as of January 2007. The university reserves the right to change programs of study, academic requirements, teaching staff, the calendar, and other matters described herein without prior notice, in accordance with established procedures.

Duke University prohibits discrimination and harassment, and provides equal employment opportunity without regard to race, color, religion, national origin, disability, veteran status, sexual orientation, gender identity, sex, or age. The university also makes good faith efforts to recruit, employ, and promote qualified minorities, women, individuals with disabilities, and veterans. It admits qualified students to all the rights, privileges, programs, and activities generally accorded or made available to students. The university also does not tolerate harassment of any kind.

Questions, comments or complaints of discrimination or harassment should be directed to the Office of the Vice-President for Institutional Equity, (919) 684-8222. Further information, as well as the complete text of the harassment policy, may be found at http://www.duke.edu/web/equity/.

Duke University recognizes and utilizes electronic mail as a medium for official communications. The university provides all students with e-mail accounts as well as access to e-mail services from public clusters if students do not have personal computers of their own. All students are expected to access their e-mail accounts on a regular basis to check for and respond as necessary to such communications, just as they currently do with paper/postal service mail.

Information that the university is required to make available under the Student Right to Know and Campus Security Acts may be obtained from the Office of University Relations at 684-2823 or in writing to 615 Chapel Drive, Box 90563, Duke University, Durham, North Carolina 27708.

Duke University is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools (1866 Southern Lane, Decatur, Georgia 30033-4097; telephone number 404-679-4501) to award baccalaureates, masters, doctorates, and professional degrees.
Contents

General Information 10
Undergraduate Degree Programs 24
Professional Graduate Degree Programs 34
Academic Information for Professional Degree Students 48
Doctoral Programs 74
Nicholas Institute for Environmental Policy Solutions 80
Research Centers 84
The Faculty 90
Courses of Instruction 118
Index 156
University Administration

GENERAL ADMINISTRATION

Richard H. Brodhead, Ph.D., President
Victor J. Dzau, M.D., Chancellor for Health Affairs; and President and Chief Executive Officer, Duke University Health System, Inc.
Peter Lange, Ph.D., Provost
Thruston B. Morton III, B.A., President of Duke Management Company
Tallman Trask III, M.B.A., Ph.D., Executive Vice-President
Peter C. Agre, M.D., Vice-Chancellor for Science and Technology
Joseph L. Alleva, M.B.A., Director of Athletics
Pamela Bernard, J.D., University Counsel
John F. Burness, A.B., Senior Vice-President for Public Affairs and Government Relations
Robert M. Califf, M.D., Vice-Chancellor for Clinical Research
H. Clint Davidson, Jr., M.B.A., Vice-President for Human Resources
Kemel Dawkins, B.A., Vice-President for Campus Services
Tracy Futhey, M.S., Vice-President for Information Technology and Chief Information Officer
Catherine Lynch Gilliss, D.N.Sc., Vice-Chancellor for Nursing Affairs and Dean of the School of Nursing
N. Allison Halton, A.B., Vice-President and University Secretary
B. Hofler Milam, M.B.A., Vice-President for Finance
Larry Moneta, Ed.D., Vice-President for Student Affairs
Molly K. O’Neill, M.S.H.A., Vice-Chancellor for Medical Center Integrated Planning; and Vice-President for Business Development and Chief Strategic Planning Officer, Duke University Health System, Inc.
Benjamin D. Reese, Jr., Psy.D., Vice-President for Institutional Equity
James S. Roberts, Ph.D., Executive Vice-Provost for Finance and Administration
Robert S. Shepard, Ph.D., Vice-President for Alumni Affairs and Development
Samuel M. Wells, Ph.D., Dean of the Chapel
Huntington F. Willard, Ph.D., Vice-Chancellor for Genome Sciences and Director of the Institute for Genome Sciences and Policy
Gordon D. Williams, B.A., Executive Vice-Provost and Chief Operating Officer, School of Medicine and Vice-Chancellor for Operations, Duke University Health System, Inc.
R. Sanders Williams, M.D., Vice-Chancellor for Academic Affairs and Dean of the School of Medicine

Administration of the Nicholas School of the Environment and Earth Sciences

William H. Schlesinger, Ph.D., Dean
Susan Lozier, Ph.D., Chair, Division of Earth and Ocean Sciences
Kenneth H. Reckhow, Ph.D., Chair, Division of Environmental Sciences and Policy
Cindy Van Dover, Ph.D., Chair, Division of Coastal Systems Science and Policy
Emily M. Klein, Ph.D., Senior Associate Dean, and Director of Undergraduate Studies in Environmental Sciences/Policy
Tim Profeta, M.E.M/J.D., Senior Associate Dean and Director, Nicholas Institute for Environmental Policy Solutions
James C. Haggard, M.B.A., Associate Dean, Finance and Administration
Scottee Cantrell, M.A., Assistant Dean, Marketing and Communications
Karen Kirchof, M.S., Assistant Dean, Career Services
Cynthia Peters, B.A., Assistant Dean, Enrollment Services
Krista Bofill, B.S., Director, Development and External Affairs
Sara Ashenburg, Director, Duke Environmental Leadership Program
Bruce Corliss, Professor and Director of Undergraduate Programs in Earth and Ocean Sciences
Judson Edeburn, Duke Forest Resource Manager
Kenneth R. Knoerr, Professor Emeritus and Director of Graduate Studies (ESP)
Glenda Lee, Assistant Director of Career Services
Lynn A. Maguire, Associate Professor of the Practice and Director of Professional Programs
Helen Nearing, Academic Coordinator, Duke University Marine Laboratory
Lincoln F. Pratson, Associate Professor and Director of Graduate Studies (EOS)
Andrew J. Read, Associate Professor and Director of Graduate Studies (CSSP)
Daniel Rittschof, Associate Professor of Zoology, and Director of Undergraduate Studies, Duke University Marine Laboratory
Joseph Scarfo, Assistant Director of Enrollment Services
Board of Visitors, Nicholas School of the Environment and Earth Sciences

Marshall Field V P’02, Old Mountain Co., Chicago, IL (Chair)
John H. Adams L’62, Hon’05, Natural Resources Defense Council, New York, NY
Ann M. Bartuska, USDA Forest Service, Washington, DC
Lawrence B. Benenson T’89, The Benenson Capital Co., New York, NY
Richard H. Bierly, Morehead City, NC
Brent F. Blackwelder T’64, P’98, P’01, Friends of the Earth, Washington, DC
Lawrence E. Blanchard T’72, Dermatology Associates of Virginia, Richmond, VA
Robert F. Bonnie F’94 (MEM, MF), Environmental Defense, Washington, DC
Ann Douglas Cornell T’75, P’07, P’09, Wallace Genetic Foundation Inc., Washington, DC (Vice Chair)
Kenneth H. Close T’81, NeXcomm Capital Partners, Southport, CT
Thomas F. Darden, Cherokee Investment Partners LLC, Raleigh, NC
Kathryn S. Fuller P’00, P’04, Ford Foundation, New York, NY
F. Daniel Gabel Jr. T’60, P’02, Hagedorn & Co., New York, NY
Jeffrey L. Gendell T’81, Tontine Partners, Greenwich, CT
Harvey J. Goldman T’68, P’98, P’01, Syska Hennessy Group Inc., New York, NY
Lyndon P. Green T’84, FCA, Cameron Holdings Corp., La Jolla, CA
Peter C. Griffith T’78, NASA Goddard Space Flight Center, Greenbelt, MD (Ex Officio)
John S. Hahn T’74, P’06, P’10, Mayer, Brown, Rowe & Maw, Washington, DC
Susan W. Hudson, Wilson, NC
Todd C. Jorn T’76, Longship Capital Management LLC, New York, NY
Edgar Maevyns, Jr. H’72, Park Avenue Dermatology Clinic, Coos Bay, OR
Mark D. Masselink T’79, P’08, Moore Capital Management, New York, NY
Brian M. McDonald F’84 (MF), International Paper Co., Stamford, CT
J. Alexander McMahon T’42, P’82, Fuqua School of Business, Durham, NC
Anne H. McMahon P’82, Durham, NC
J. Thomas McMurray E’76, G’78, PhD’80, P’08, Marine Ventures Foundation, Jackson Hole, WY
J.K. Nicholas T’89, B’96, Chelsea Clocks, Chelsea, MA
Nancy Ragland Perkins T’93, F’97 (MEM), United States Senate, Washington DC
Frank W. Peterman, The Wilderness Society, Atlanta, GA
Tim Profeta L’97, F’97 (MEM), Nicholas Institute for Environmental Policy Solutions, Durham, NC (Ex-Officio)
William K. Reilly, Aqua International Partners, L.P., San Francisco, CA (Ex-Officio)
Randolph K. Repass E’66, West Marine, Watsonville, CA
Paul D. Risher E’57, P’88, Risher Investments, Stamford, CT
Stephen E. Roady L’76, P’03, Earthjustice, Washington, DC
Sally-Christine Rodgers, Watsonville, CA
Amy Schick-Kenney T’96, F’98 (MEM), Amy Schick Consulting, Philadelphia, PA (Ex-Officio)
Truman T. Semans Jr. T’90, B’01, Pew Center on Global Climate Change, Arlington, VA
Ruth G. Shaw, Duke Energy Corp., Charlotte, NC
Arthur L. Smith T’74, P’03, John S. Herold Inc., Houston, TX
Brad G. Stanback T’81, Winterberry Farm, Canton, NC
J. Blake Sullivan F’89 (MF), Sullivan Forestry Consultants Inc., Americus, GA
Stephen A. Wainwright T’53, P’80, P’86, Duke University, Dept. of Biology, Durham, NC
Wayne F. Wilbanks T’82, Wilbanks, Smith & Thomas Asset Management, Norfork, VA

Alumni Council, Nicholas School of the Environment and Earth Sciences

Amy M. Schick-Kenney T’96, F’98 (MEM), Consultant, Philadelphia, PA (President)
Claire Agre T’02, Hargreaves Associates Landscape Architecture & Urban Design, Somerville, MA
Cristina F. Argeles T’95, F’00 (MEM), Horst Inc., Kutztown, PA
E. Fielding Arnold T’01, Thompson Island Outward Bound Education Center, Boston, MA
Kirsten M. Cappel F’04 (MEM), U.S. EPA, Washington, DC
T. Spencer Crowley III T’96, Gunster Yoakley & Stewart PA, Miami, FL
J. Marc Deyfors F’90 (MEM), Forests of the World LLC, Durham, NC
Charles F. Finley Jr. F’67 (MF), Verbatim Editing, Richmond, VA
Chung-Hong Fu F’93 (MEM), Timberland Investment Resources LLC, Atlanta, GA
Peter C. Griffith T’78, NASA Goddard Space Flight Center, Baltimore, MD
Robert S. Jacobs T’84, Encore Acquisition Co., Ft. Worth, TX
Leslie Jamka F’99 (MEM), Hazardous Substances Research Center, Baltimore, MD
Toni M. Kerns F’03 (MEM), Atlantic States Marine Fisheries Commission, Washington, DC
Emily R. Lindow F’00 (MEM), U.S. Department of Commerce, Washington, DC
Thomas Medary T’84, Mani Operating Co., Corpus Christi, TX
Charles E. Murphy Jr. F’63, PhD’70, Aiken, SC
Richard Pandulillo F’81 (MEM), Durham, NC
Paul Parker F’97 (MEM), Cape Cod Commercial Fisherman’s Association, North Chatham, MA
Michael Pentony E’87, F’96 (MEM), NOAA Fisheries, Gloucester, MA
Kris Pickler F’99, Troutman Sanders LLP, Raleigh, NC
Robert Piotrowski G’74, Marathon Oil, Houston, TX
Anna Stark F’05 (MEM), Consultant, Arlington, VA
Heather Stevenson F’83 (MEM), McGuire Woods LLP, Richmond, VA
Monica Ulewicz F’92 (MEM), Eastern Stream Center on Resources and Training, Oneonta, NY
Robert Young PhD’95, Western Carolina University, Cullowhee, NC
Academic Calendar

Fall 2006

August
21 Orientation for fall semester—Durham
23-25 Registration of new and nonregistered returning students
28 Fall semester classes begin—Durham
28 Orientation for fall semester—Marine Laboratory
30 Fall semester classes begin—Marine Laboratory

September
8 Drop/add ends

October
6-10 Fall break

November
1 Registration begins for spring semester, 2007
15 Registration ends for spring semester, 2007
16 Drop/add begins
21 Thanksgiving recess (begins at 10:30 p.m. Tuesday)

December
1 Graduate classes end
2 Graduate reading period begins
11-17 Final examinations

Spring 2007

January
8 Orientation for spring semester
9 Registration of new and nonregistered returning students
10 Spring semester classes begin—Durham and Marine Laboratory
10 Session One of Beaufort-to-Bermuda begins
15 Martin Luther King Jr. holiday
24 Drop/add ends

March
9 Session One of Beaufort-to-Bermuda at Marine Laboratory ends
9-19 Spring break
19 Session Two of Beaufort-to-Bermuda at Marine Laboratory begins

April
4 Registration begins for fall semester, 2007; summer registration continues
13 Registration ends for fall semester, 2007; registration for summer semester, 2007, continues
14 Drop/add begins
18 Graduate classes end
19 Graduate reading period begins
29 Graduate reading period ends
30 Final examinations begin

May
11-13 Commencement

Summer 2007

May
14 First summer term begins at Marine Laboratory

June
15 First summer term ends at Marine Laboratory

July
9 Second summer term begins at Marine Laboratory

August
10 Second summer term ends at Marine Laboratory

1. The dates in the calendar are tentative and subject to change. Students should consult http://www.registrar.duke.edu/registrar/studentpages/student/academicalendars.html.
Welcome to the Nicholas School!

More than six billion people share this planet with us, and the world seems destined to add another three billion citizens during the lifetime of our current students. Our challenge will be to provide food, shelter and peace to the expanding human population while at the same time maintaining the fabric of biodiversity in the natural ecosystems that sustain life on this planet. To meet this challenge, we need professionals trained in both science and policy to understand and tackle environmental issues, both in the United States and abroad.

The Nicholas School of the Environment and Earth Sciences at Duke University is designed to train these environmental professionals—those who will work within the private and public sector to sustain the environment and those who will work within academic and other research institutions to understand the human impact on our planet. Whether you are an undergraduate, a professional master’s or a doctoral student, the Nicholas School will fulfill your desire to know more about the Earth’s environment and will prepare you for a career in environmental preservation.

No other school in the United States can offer the breadth of expertise that you will find in the Nicholas School: our faculty’s research spans the atmosphere and oceans, the deep earth and its surficial sediments, and the plants, animals, fungi and microbes that maintain the stable conditions for the persistence of life on Earth. As a student, you will gain a fundamental understanding of how the world works and an interdisciplinary framework that allows you to put that knowledge to work in the worlds of policy, law, economics and academia.

Our recent graduates are employed across the nation, where, daily, they make a difference in environmental protection, sustainable resource management and the dissemination of fundamental knowledge about the Earth. Our planet is better for it!

We welcome you to our ranks—to explore the Earth’s environment, and as a graduate of the Nicholas School, to join the ranks of those who strive to create a better world for the future.

William H. Schlesinger
Dean, Nicholas School of the Environment and Earth Sciences
General Information
Introduction

Headquartered in the heart of the Duke campus, the Nicholas School of the Environment and Earth Sciences functions as an environmental forum and an intellectual hub, drawing input from all disciplines at Duke—including law, business, medicine, science and engineering. The goal is to develop critical and creative thinkers and doers who will shape tomorrow’s Earth.

No other university—and no other environmental school—takes such a broad approach to environmental science and policy.

The mission of the Nicholas School is education and research to understand basic earth and environmental processes, to understand human behavior related to the environment and to inform society about the conservation and enhancement of the environment and its natural resources for future generations. Intrinsic to this mission are (1) a commitment to interdisciplinary approaches; (2) a commitment to objective and, where possible, quantitative approaches; (3) a commitment to principles of ecological integrity; (4) a commitment to the sustainable use of natural resources; and (5) a commitment to environmental education at all levels. The overall objective is to assist in the definition and resolution of environmental problems confronting society, through excellence in natural resource and environmental education and research.

Both basic and applied research are integral to the Nicholas School’s mission. The faculty is engaged in a dynamic program of research, much of which is focused on contemporary natural resource and environmental issues, both terrestrial and marine, that are regional, national and global in scope. Students also are encouraged to apply basic research to help solve real-world environmental problems. Alumni of the Nicholas School hold leadership positions in government, private industry, academia and not-for-profit organizations throughout the nation and the world.

Graduate Professional Degrees

Most students entering the Nicholas School seek graduate professional degrees, preparing for careers as expert environmental problem-solvers after two years of study. The Master of Environmental Management (M.E.M.) degree trains students to understand the scientific basis of environmental problems, as well as the social, political and economic factors that determine effective policy options for their solution. The Master of Forestry (M.F.) degree develops experts in sustainable management of forested ecosystems. Students enrolling at the Nicholas School also have the opportunity to seek joint degrees with Duke’s Fuqua School of Business (M.B.A.), the School of Law (J.D.), and the Terry Sanford Institute of Public Policy (M.P.P.), and to jointly pursue the Master of Arts in Teaching (M.A.T.).

Doctoral Degrees

The traditional Ph.D., which is offered to Nicholas School students through the Duke Graduate School, provides the opportunity for students to pursue in-depth interest in a more narrowly focused field in preparation for a career in teaching and/or research. Doctoral students work with faculty in each of the Nicholas School’s three divisions: Environmental Sciences and Policy, Earth and Ocean Sciences, and Coastal Systems Science and Policy.
Undergraduate Degrees

The Nicholas School cooperates with Trinity College of Arts and Sciences in awarding four undergraduate degrees: the A.B. in Environmental Science and Policy, the B.S. in Environmental Sciences, and the B.A. and B.S. in Earth and Ocean Sciences. In addition minors are offered in both Environmental Sciences and Policy and Earth and Ocean Sciences. Courses for the majors are taught by more than 60 Duke professors in 20 cooperating departments and schools. The Biology Department offers a B.S. with a concentration in Marine Biology that is fulfilled by a semester in residence at the Duke University Marine Laboratory—a major facility of the Nicholas School.

History of the Nicholas School

The Nicholas School of the Environment and Earth Sciences is the newest school to be formed at Duke University, but it represents the joining of three programs whose histories are almost as old as the university itself: the School of Forestry and Environmental Studies and the Duke University Marine Laboratory, both formed in 1938, and the Department of Geology, founded in 1936.

In 1932, forestry instruction was first offered to undergraduate students, and in 1938 the School of Forestry was established as a graduate professional school under the direction of Dean Clarence F. Korstian. Dr. Korstian had joined the faculty in 1931 as the first director of the Duke Forest. Brought to Durham by Dr. William P. Few, president of Duke at the time, Dr. Korstian set out to develop a demonstration and research forest that would serve as a model for owners of small tracts of timber in the South.

The Master of Forestry and Doctor of Forestry degrees were offered initially, and later the A.M., M.S., and Ph.D. were offered through the Graduate School. The School’s forestry program has been fully accredited by the Society of American Foresters since 1939.

Growing national concern with natural resources and environmental problems led to a new teaching and research emphasis in ecology in the 1970s. In 1974, the program’s name was changed to the School of Forestry and Environmental Studies, and a new degree was added, the Master of Environmental Management (M.E.M.).

The Duke University Marine Laboratory also had its beginnings in the 1930s, when Dr. A. S. Pearse and colleagues from Duke were attracted to Pivers Island and its surrounding abundance of marine life for their summer field studies. The island afforded an excellent location for a field station. Through the subsequent efforts of Dr. Pearse and others, the land was acquired, and the first buildings of the Duke University Marine Laboratory were built in 1938. Originally, the Marine Lab served only as a summer training and research facility. Today, it operates year-round to provide training and research opportunities to approximately 3,500 people annually.

In 1991, the School of Forestry and Environmental Studies was combined with the Duke University Marine Laboratory to form the School of the Environment. The new school represented an unprecedented university commitment to interdisciplinary education and research in environmental science, policy, and management. It was the only private graduate professional school of its type in the country. The school became the Nicholas School of the Environment in 1995 after a generous gift from Duke graduates Peter and Ginny Nicholas.

In 1997, the new Division of Earth and Ocean Sciences was created when the former Department of Geology, previously a part of Trinity College of Arts and Sciences, joined the School. This department also dates from the 1930s when Dr. Willard (Doc) Berry was hired as the first geologist at Duke University. By the 1960s, the Department of Geology had established itself as a center for the study of sedimentary geology. Today, as the Division
of Earth and Ocean Sciences, it focuses on a number of areas at the intersection of earth and environmental sciences. With the addition of the Division of Earth and Ocean Sciences, the Nicholas School added Earth Sciences to its name in December 2000 to more accurately reflect the scope of its programs.

As part of the Campaign for Duke, Peter and Ginny Nicholas donated $70 million in December 2003 to enrich the Nicholas School and enhance its facilities. A major portion of this new gift established the Nicholas Institute for Environmental Policy Solutions to work in conjunction with the Nicholas School to engage with decision makers in government, the private sector and the nonprofit community to develop innovative proposals that address critical environmental challenges.

Divisions

The school is composed of three divisions, which serve graduate professional, doctoral, and undergraduate students:

Earth and Ocean Sciences (EOS)

With focal areas in climate change, solid earth processes and surficial processes, this division is headquartered in the Old Chemistry building at Duke. The EOS faculty conduct research all over the world, from the 3,200-meter-deep Hess Deep trench in the Pacific Ocean to the 4,000-meter altitudes of the South American Altiplano.

Environmental Sciences and Policy (ESP)

With focal areas in ecosystem science and management, environmental health, wetlands and environmental economics and policy, ESP is headquartered in the Levine Science Research Center. Faculty with training in the biological, physical, chemical and social sciences work on applied and basic environmental research problems. The division stresses interdisciplinary approaches to environmental problem solving.

Coastal Systems Science and Policy (CSSP)

With focal areas in marine ecology, estuarine processes and coastal geology, this division is headquartered at the Duke University Marine Laboratory at Beaufort, NC. Faculty research interests include studies of marine conservation biology and fisheries practice, the post-hurricane health of the Neuse River and Pamlico Sound, applications of social science to environmental policy and management of marine ecosystems.

Location

Duke University is situated in Durham, a city of more than 200,000 inhabitants in the central piedmont region of North Carolina. The Appalachian escarpment lies approximately 100 miles to the west of Durham, and the coastal plain is but a short distance to the east. The Duke University Marine Laboratory is located 180 miles to the east of Durham, on Pivers Island, adjacent to the historic town of Beaufort, North Carolina. The Nicholas School is thus ideally situated near areas of ecological and topographic diversity that offer many opportunities for study as well as recreation.

Piedmont North Carolina is characterized by a rolling, forested topography interspersed with small farms and rural communities in addition to the state’s largest cities. The climax forests of the piedmont are hardwoods; however, human disturbance has resulted in the establishment of many forests of native southern pines. To the west, the Appalachian Mountains contain magnificent hardwood forests, giving way to spruce-fir forests at higher elevations. The region hosts a large percentage of the rich biodiversity of the southeastern United States.
The coastal plain of North Carolina, well known for its agricultural production, is used extensively by many of the nation’s forest industries for plantations of native pines. Coastal wetlands and estuaries, now recognized as one of the nurseries of world fisheries, offer abundant and valuable natural resources. The barrier islands of North Carolina’s Outer Banks serve to protect these coastal waters. The rapidly increasing population and development in this region make proper management of its natural resources particularly important to the nation.

Because of the school’s central location near these regions of vital ecological importance and rapid human population growth, students are afforded the opportunity to study many current environmental problems in the field. Both the opportunity and the challenge exist to analyze these pressing problems and to develop sound approaches to their management.

Facilities

The Nicholas School of the Environment and Earth Sciences is headquartered in the Levine Science Research Center (LSRC), an interdisciplinary research facility situated on Research Drive on Duke University’s West Campus. The building includes state-of-the-art classrooms, computer labs specializing in the analysis of geospatial data and research laboratories and instrumentation supporting both teaching and research. The Division of Environmental Sciences and Policy is located in the Levine Science Research Center.

The Division of Earth and Ocean Sciences occupies renovated laboratories in the Old Chemistry building on the West Campus. The Division maintains state-of-the-art facilities for geochemical analysis and climate modeling studies.

Duke University Marine Laboratory is home to the third division of the Nicholas School, the Coastal Systems Science and Policy division. Situated on Pivers Island on the coast of North Carolina, the Marine Lab is Duke’s coastal campus. Its facilities are described in detail later in this chapter.

Duke Forest

The Duke Forest is the university’s outdoor laboratory for teaching and research in the natural sciences. It comprises more than 7,000 acres of land in six divisions. The Durham division is a short drive from campus, and a network of roads and fire trails makes almost all areas of the Forest easily accessible.

The Forest lies primarily in Durham and Orange counties, near the eastern edge of the piedmont plateau, and supports a cross section of the woodlands found in the upper coastal plain and lower piedmont of the Southeast. A variety of timber types, plant species, soils, topography and past land-use conditions are represented. Elevations range from 260 to 760 feet. Soils in the Forest are derived from such diverse parent materials as metamorphic rock of the Carolina slate formation, granite, Triassic sedimentary rock and basic intrusives.

The Duke Forest, as it is known today, had its origins in the mid-1920s when the university administration bought many small farms and interspersed forestland as buffer land and expansion areas for the main campus. The Forest was placed under intensive management in 1931 by Dr. Clarence Korstian, its first director. In its early development, several basic objectives were emphasized: (1) demonstration of timber management techniques on a practical and economic basis, (2) development of an experimental forest for research in the sciences associated with timber growing, and (3) development of the area as an outdoor laboratory for students of forestry.

These early objectives have been modified, in part because of a greatly increased interest and dependence on the Forest for research by faculty and students at Duke and
neighboring universities. For instance, the Blackwood Division of the Forest now hosts the Free-Air CO₂ Enrichment (FACE) experiment, which allows investigators to study how forests will grow in future, elevated levels of carbon dioxide in Earth’s atmosphere.

Background information on all aspects of the Forest is available from the Office of the Duke Forest and on the Internet at http://www.dukeforest.duke.edu. The Duke Forest maintains a comprehensive Geographic Information System (GIS) for analysis of forest cover, soils, topography and management history and other features. A bibliography chronicles past and current studies involving the Forest.

The Duke Forest, because of its size, diversity, proximity to campus and 75 years of accumulated research data, is a natural resource unequalled at any other university.

The forest also serves in an educational and recreational capacity for residents of the Durham and Chapel Hill communities. Hiking, picnicking, jogging and nature study are particularly popular pastimes.

Duke University Marine Laboratory
General Information

The Duke University Marine Laboratory is a campus of Duke University and a unit within the Nicholas School of the Environment and Earth Sciences. Its mission is education and research in basic ocean and coastal ecosystem processes, marine conservation biology, and ocean and coastal environmental management and policy.

The Marine Lab operates year-round to provide training, educational and research opportunities to about 3,500 people annually, including undergraduate, graduate degree and doctoral students enrolled in the university’s academic programs; visiting student groups who use the laboratory’s facilities; and scientists who come from North America and abroad to conduct research. A seminar/lecture series features many distinguished scientific speakers from across the nation and abroad.

Location and Natural Environment

The Marine Lab is situated on Pivers Island, near the historic town of Beaufort. Beaufort is the third-oldest town in North Carolina and is surrounded by fishing, agricultural and leisure-tourism communities. The area is well known for its historic and scenic attractions as well as being a seaside resort. Cape Lookout National Seashore and the Rachel Carson Estuarine Research Reserve are within easy boating distance.

The laboratory is within range of both temperate and tropical species of marine biota. The edge of the Gulf Stream oscillates between 30 and 40 miles offshore, with reefs on the wide continental shelf. The coastal region of North Carolina is a system of barrier islands, sounds and estuaries rich in flora and fauna, and other diverse habitats, including rivers, creeks, mud flats, sand beaches, dunes, marshes, peat bogs, cypress swamps, bird islands and coastal forests. It is a haven for both nature lovers and those interested in the pursuit of marine science.

Five other laboratories in the Beaufort–Morehead City area collectively house one of the highest concentrations of marine scientists in the nation. These are the University of North Carolina’s Institute of Marine Sciences, the Center for Marine Science and Technology, the North Carolina State University Seafood Laboratory, the North Carolina Aquarium at Bogue Banks, the North Carolina Divisions of Marine Fisheries and Coastal Management, the North Carolina Maritime Museum and the National Oceanic and Atmospheric Administration’s (NOAA) Beaufort Laboratory. This concentration of marine scientists provides a critical mass for the pursuit of science, conservation and education.
Teaching and Research Facilities

The Marine Lab consists of 24 buildings: dormitories, a dining hall, a student commons, classrooms, laboratories and six research buildings, including the new Marguerite Kent Repass Ocean Conservation Center, the Marine Lab’s first LEED-Certified green building. In addition to modern analytical facilities, the Marine Lab operates a variety of seawater systems and tanks for experimental work. The Marine Lab also maintains modern computer facilities and IT services, including state-of-the-art televideo facilities, linked to the outside world through a DS3 line. The Pearse Memorial Library at the Marine Lab is a component of the Duke University Library System. Computer and library facilities are described in further detail in the sections highlighting the Computer and Library Resources of the Nicholas School and Duke University.

The Marine Lab operates the *R/V Susan Hudson*, a 57-foot fully equipped coastal oceans research vessel, and is the home port for the *R/V Cape Hatteras*, a 135-foot oceanographic research vessel operated by the Duke/University of North Carolina Oceanographic Consortium (DUNCOC).

Duke/University of North Carolina Oceanographic Consortium (DUNCOC)

The Duke/UNC Oceanographic Consortium operates the *R/V Cape Hatteras*, one of the ships in the fleet of oceanographic vessels supported by the National Science Foundation, for the purpose of providing research opportunities for scientists from across the nation. The ship is based at the Marine Lab and operates both on the continental shelf and in the deep sea in the western North Atlantic, concentrating on the region between Nova Scotia and the Caribbean. The *Hatteras* is used for training at sea by members of the Consortium (Duke, the University of North Carolina at Chapel Hill, North Carolina State University, the University of North Carolina at Wilmington, the University of North Carolina at Greensboro, and Eastern Carolina University). Inquiries regarding the use of the research vessel should be directed to the Marine Superintendent at the Duke University Marine Lab.

Computer Resources

The Nicholas School of the Environment and Earth Sciences maintains its own Information Technology department in addition to participating in Duke’s centralized computing initiatives. The Nicholas School IT department supports students, faculty and staff in all divisions and locations. Resources at each location vary, but all provide computing labs, specialized software packages, data storage, printers, scanners and network/Internet access.

Hardware offerings include Nicholas School-only computing labs; instructional computing classrooms; loaner laptops, tablets and iPods; high-speed printers; a large-format plotter for printing posters and maps; and several digital projector/PC carts available for checkout.

The Nicholas School provides access to ArcGIS software and is the main source of training and support. Duke site-licensed software as well as typical office packages and presentation software are also installed on Nicholas School computers. Operating systems supported include Linux, Mac OSX and Windows XP Professional.

Network services include centralized data storage and archiving, videoconferencing and access to Duke’s broadband and wireless networks.

Because the Nicholas School is spread across several locations, videoconferencing is a frequently employed tool enabling faculty, staff and students to communicate and visualize information regardless of distance. Certain courses are co-located in both Durham and Beaufort.
The school’s participation in Duke’s high-performance computing initiative facilitates access to Duke’s high-performance and cluster computing services. Blackboard, Lectopia, and web conferencing are examples of other Duke centralized initiatives that are being used in the Nicholas School.

Computing resources change frequently; for the most up-to-date look at Nicholas School offerings, visit http://www.nicholas.duke.edu/it. For more information on Duke resources (which include E-mail accounts, off-site high-speed Internet service, and DukeNet tools and site-licensed software), see http://www.oit.duke.edu.

Regional Resources

Research Triangle Park

Numerous industrial and governmental organizations have established research facilities in the Research Triangle Park, 10 miles from the Duke campus. Government facilities include a major research laboratory of the Environmental Protection Agency, the Forestry Sciences Laboratory of the United States Forest Service, and the National Institute of Environmental Health Sciences (NIEHS). These laboratories provide opportunities for student research and internships in some of the nation’s most advanced research facilities.

Neighboring Universities

Through a reciprocal agreement, Duke students may supplement their education in forestry and the environmental sciences by taking courses in related fields at the University of North Carolina at Chapel Hill, North Carolina State University in Raleigh, and North Carolina Central University in Durham. Graduate students of Duke University and the University of North Carolina at Chapel Hill are granted library loan privileges in both universities.

Forest History Society

Founded in 1946, the Forest History Society is a nonprofit, nonadvocacy organization committed to balanced and objective investigations of human interaction with the forest environment. In 1984, it became affiliated with Duke University and moved its headquarters to Durham. The Forest History Society co-publishes the quarterly journal *Environmental History* and maintains a large collection of archival materials, including records from the American Forestry Association, American Forest Institute, National Forest Products Association and the Society of American Foresters. These valuable resources and the services of the Society’s reference staff are available to Nicholas School students. The Society also provides the F. K. Weyerhaeuser Fellowship for a graduate student studying forest conservation history (see Financial Aid sections in chapters for professional degree and doctoral students in this Bulletin). Internet: http://www.lib.duke.edu/forest.

Carolina Population Center

The Carolina Population Center is a community of outstanding scholars who promote population research and education at the University of North Carolina at Chapel Hill. The CPC offers classes and seminars and supports its own library as well as an online catalog of Internet resources. The Nicholas School collaborates with the Carolina Population Center as a member of its Integrative Graduate Education and Research Training (IGERT) grant from the National Science Foundation. Internet: http://www.cpc.unc.edu.

Center for Sustainable Enterprise

Based at the Kenan-Flagler Business School at the University of North Carolina at Chapel Hill, the Center for Sustainable Enterprise offers educational programs, research and outreach to help companies and nonprofit organizations grow and profit in non-
traditional and emerging markets with economically, environmentally and socially sustainable strategies. Nicholas School students with interests in business and the environment, industrial ecology and sustainable business practices frequently enroll in courses offered by this Center. Internet: http://kenan-flagler.unc.edu/sei.

Organization for Tropical Studies at Duke
The Organization for Tropical Studies (OTS) is a non-profit consortium that has grown to include 63 universities and research institutions from the United States, Latin America and Australia. In the early 1960's, scientists from U.S. universities forged working relationships with colleagues at the Universidad de Costa Rica in the interest of strengthening education and research in tropical biology. Intense interest both in the U.S. and Costa Rica led to the founding of OTS in 1963. OTS was founded to provide leadership in education, research and the responsible use of natural resources in the tropics. To address this mission, OTS conducts graduate and undergraduate education, facilitates research, participates in tropical forest conservation, maintains three biological stations in Costa Rica and conducts environmental education programs. Internet: http://www.ots.duke.edu/.

Campus Resources
Libraries
The libraries of Duke University comprise the seven facilities that are part of the Perkins Library System along with the independently administered libraries serving the Divinity School, the Fuqua School of Business, the Law School, and the Medical Center. The university libraries have combined collections of 5.5 million volumes. Among additional holdings are 17.7 million manuscripts, 1.2 million public documents, tens of thousands of journals, films and videos, and audio recordings. An array of resources, including more than 30,000 journals, is available electronically.

The Biological and Environmental Sciences Library, located in room 101 of the Biological Sciences building, contains more than 200,000 volumes and receives nearly 700 journals related to life sciences and the environment. The library also subscribes to over 20 full-text and citation databases covering environmental and ecological research.

The Pearse Memorial Library on the Beaufort campus is a branch library of Duke’s Perkins Library System. It provides access to print and electronic resources that support interdisciplinary education and research with a primary focus on the marine environment. The library subscribes to 60 research journals and maintains holdings of approximately 23,000 volumes. The Pearse Library is connected electronically to the online catalog of the Duke University Libraries, with access to electronic journals. It actively participates in interlibrary loan and document delivery services in cooperation with regional and national academic institutions and research centers.

Student Life
Housing
Most undergraduates live in dormitories on the Duke campus, and first-year undergraduates are required to do so. Dormitories are also available for students attending the Duke University Marine Laboratory. While limited housing for graduate students is available on campus, most graduate students in the Nicholas School of the Environment and Earth Sciences have no trouble finding a place to live off campus. The perimeter of the West Campus is densely developed with apartment complexes, and the East Campus is adjacent to a neighborhood of large, early 20th-century homes, some of which have been converted to apartments. Free and frequent bus service is available between the two
campuses and between Duke and the University of North Carolina at Chapel Hill.

The Duke Community Housing Office maintains listings of apartment openings, house rentals and roommates wanted. The off-campus housing service does not rate the quality of apartments, houses or landlords, nor does it arrange viewings. However, a student-maintained Web site at http://www.duke.edu/web/n-watch does provide this type of information. Similarly, the Nicholas School maintains an electronic bulletin board where students may list apartments and seek housing or roommates. The Office of Enrollment Services sends housing information to all entering professional degree students in the late spring.
Services for Students

Student Disability Access Office

Duke University and the Nicholas School of the Environment and Earth Sciences are committed to equality of educational opportunities for qualified students with disabilities. The Student Disability Access Office (SDAO) is charged with the responsibility of exploring possible coverage and reasonable accommodations for undergraduate, graduate, and professional students for purposes of the Americans with Disabilities Act (ADA) of 1990 and Section 504 of the Rehabilitation Act of 1973. The mission of the Student Disability Access Office (SDAO) is to provide and coordinate accommodations, support services, and auxiliary aids for qualified students with disabilities.

Services and accommodations are provided to students with a variety of disabilities, including but not limited to attention deficit hyperactivity disorders, learning disabilities, psychological disabilities or physical disabilities such as visual impairments, hearing impairments, chronic health disorders and mobility impairments. Students who wish to be considered for reasonable accommodations at the Nicholas School must identify themselves to the Student Disability Access Office. A comprehensive web site at http://www.access.duke.edu/student_graduate.asp provides complete policy and procedural information for students requesting to be considered for reasonable accommodations.

For questions about documentation, eligibility and accommodations, please contact: Emma Swain, Ph.D., Director, Student Disability Access Office at 402 Oregon Street, Suite 102, Box 90142, Durham, NC 27708 or at 919-668-1267. For information about specific Nicholas School program requirements, please contact Karen Kirchof, Director, Career Services, Nicholas School of the Environment at Box 90332, Duke University, Durham, NC 27708 or at 919-613-8016.

Communications

Upon entrance to the Nicholas School, each student is issued an E-mail address. E-mail is recognized as an official means of communication within the university. Students are encouraged to check their E-mail frequently.

Medical Care

The Duke Student Health Center, the primary care clinic for Duke students, is located within the Duke Clinic in the sub-basement Orange Zone, Duke South Hospital and Clinics, with an entrance off Flowers Drive. Emergency transportation, if required, can be obtained from the Duke campus police. Internet: http://healthydevil.studentaffairs.duke.edu/medical_services.

The student health fee is nonrefundable after the first day of classes. Students may be covered during the summer for an additional charge. Dependents and family members are not covered at any time.

The resources of the Medical Center are available to all students and their spouses and children. Charges for all services received from the Medical Center are the responsibility of the student, and students must carry health care insurance to cover these costs.

The university has a Student Medical Insurance Plan available for full-time students. Although participation in this plan is voluntary, the university expects all graduate students to be financially responsible for medical expenses above those covered by the student health service. Students who have medical insurance or wish to accept the financial responsibility for any medical expense may elect not to join the Student Medical Insurance Plan by registering their insurance provider with the university online. Each full-time student in
residence must purchase Duke’s student health insurance or indicate the alternative arrangement.

The Student Medical Insurance Plan is in effect 24 hours a day during the 12-month term of the policy. Students are covered on and off the campus, at home, while traveling and during interim vacation periods. For additional fees, a student may obtain coverage for a spouse and children. The annual term of the policy begins on the opening day of classes each fall.

Coverage and services are subject to change as deemed necessary by the university.

Counseling and Psychological Services (CAPS)

CAPS provides a comprehensive range of counseling and psychological services to assist and promote the personal growth and development of Duke students. The professional staff is composed of clinical social workers, psychologists and psychiatrists experienced in working with young adults. Among services provided are personal, social and academic counseling. A number of short-term seminars or groups focusing on skills development and special interests such as coping with stress and tension, fostering assertiveness, enriching couples’ communication and dealing with separation and divorce are also offered.

A policy of strict confidentiality is maintained concerning each student’s contact with the CAPS staff. Student health fees cover individual evaluation and brief counseling/therapy as well as skills development seminars. There are no additional charges to the student for these services.

Appointments may be made by calling 660-1000 or visiting CAPS, 214 Page Building.

Career Services

The Nicholas School of the Environment and Earth Sciences operates its own Career Services office for MEM/MF students and alumni. (see page 68). The mission of Career Services is to offer high quality services, programs and career opportunities that are academically relevant and positively contribute to the student’s professional development and eventual career success. Professional staff members are available to assist Nicholas School students in Durham and Beaufort with individual career planning, internship and employment searches and professional development needs. The career services Web site (http://www.nicholas.duke.edu/career) provides current students and alumni career advice, access to an active alumni network, employment/internship opportunities and information about scholarships, research grants and fellowship opportunities.

The Career Center at Duke University (http://career.studentaffairs.duke.edu) provides career services of the highest standard to Trinity College undergraduates and graduate students in the Graduate School. The Center’s goal is to assist with exploration of career options to post-graduation employment preparation and opportunities that match an individual’s special interests, training and expertise gained from an undergraduate education or Ph.D. credential. The Career Center has numerous services, resources, programs and events to help students choose careers or further training and education.

International Advisor

The Duke University International Office handles governmental matters for students from abroad, including statements of attendance for home governments, issuance of United States immigration forms for reentry into the country after a temporary absence and required yearly extensions of time. Any new student who is not a citizen of the United States should report with passport to the international advisor immediately upon arrival. The International Office is located at 300 Alexander Avenue.
Other Services

The Bryan University Center houses an information desk, two drama theaters, a film theater, stores for books and supplies, meeting rooms, lounges, snack bars and other facilities. A barbershop, hairdresser, post office and bank are also located in the Bryan Center and in the nearby West Campus Union.

Student Activities and Organizations

Sports

Students are welcome to use recreational facilities such as the swimming pools, tennis courts, golf course, track, jogging course, handball and squash courts, gymnasiums, weight room and playing fields. Intramural programs provide an opportunity to participate in informal and competitive physical activity. A variety of clubs for gymnastics, scuba diving, sailing, cycling, badminton, karate, rugby, soccer and crew are also active.

Cultural Activities

Concerts, recitals, lectures, plays, films and dance programs are presented frequently on campus. Information on major events is available at Page Box Office or the Bryan Center information desk. The Nasher Museum of Art, Located near West Campus, features an excellent permanent collection as well as popular visiting exhibitions.

Religious Services

Interdenominational services are conducted on Sunday mornings in Duke Chapel. Roman Catholic masses are offered daily on campus. Several Protestant denominations have student centers on campus. The Divinity School conducts other chapel services and religious and social activities. There is also a Hillel group that meets regularly, and a new on-campus facility, the Freeman Center, hosts Jewish student life activities.

Duke Environmental Law and Policy Forum

Students from the Nicholas School work with students of the Duke University School of Law to produce the biannual journal *Duke Environmental Law and Policy Forum* as an outlet for scholarly work in environmental law, policy, economics and science. Recent issues of the journal have dealt with climate change, environmental justice and land use.

Duke Environmental Leadership (DEL) Program

Nicholas School students can participate in a wide variety of environmental education, service learning and outreach activities through the DEL Program. Opportunities include working with students and teachers in local partner schools, participating in community outreach workdays, and planning and implementing Duke University’s Earth Day and Earth Month activities.

Duke University Greening Initiative (DUGI)

The Duke University Greening Initiative is a project-based, primarily graduate student organization that focuses on projects that will further the institutionalization of sustainability at Duke. Recognizing that in a volunteer organization, equal ownership is vital, DUGI operates on a non-hierarchical, consensus basis. Learn more at http://www.duke.edu/greening/mission.html.

FOREM

FOREM (Forestry and Environmental Management) is a Nicholas School professional student organization that coordinates the school’s social functions, community service and
intramural team participation. Annual activities of the club include a holiday party, Field Day and a year-end banquet.

Nicholas School Student Council (NSSC)

The Nicholas School Student Council, an elected student group in the Nicholas School, meets regularly with the dean and faculty and staff representatives to discuss courses and curriculum, programs and long-range goals of the school.

Student International Discussion Group (SIDG)

A nonprofit student discussion group at the Nicholas School that provides opportunities for students to integrate international issues into their graduate education. Although the group’s main interests are environmental issues, it also explores sustainable development and societal concerns. SIDG also offers grants to students who would like to study abroad and co-organizes an annual conference on environmental and sustainability issues with the Working Group for Environment in Latin America.

Working Group for Environment in Latin America (WGELA)

This group sponsors student and professional talks for the purpose of furthering knowledge about recent trends and activities in environmental research in Latin America, as well as allowing students to investigate opportunities for research and employment. With the Student International Discussion Group, WGELA cosponsors an annual conference on environmental and sustainability issues.

Professional and Scientific Societies

Student chapters of national societies at the Nicholas School create a forum where students with similar interests can share professional information and learn from practicing professionals. Speaker programs, information sessions with employers and seminars serve to increase the value of the Nicholas School education. Recognizing the importance of active participation in student organizations and encouraging attendance at national conferences and symposia, the Nicholas School makes a limited amount of funding available for student attendance or presentations.

Student chapters of the Society of American Foresters, the Coastal Society, the Society for Conservation Biology, the National Association of Environmental Professionals, the Society of Environmental Toxicology and Chemistry and the American Water Resources Association are active in the Nicholas School.
Undergraduate Degree Programs
Undergraduate Degree Programs

The Nicholas School of the Environment and Earth Sciences collaborates with Trinity College of Arts and Sciences in awarding four undergraduate degrees: (1) the Bachelor of Arts in Environmental Sciences and Policy, (2) the Bachelor of Science in Environmental Sciences, (3) the Bachelor of Arts in Earth and Ocean Sciences, and (4) the Bachelor of Science in Earth and Ocean Sciences. In addition, minors are offered in both Environmental Sciences and Policy and Earth and Ocean Sciences. Courses for the majors and minors are taught by Nicholas School faculty and professors in cooperating departments and schools within Duke University. Information on these majors and minors is available through the Undergraduate Office in 107 Old Chemistry Building; undergrad@nicholas.duke.edu, or through the program web site at http://www.nicholas.duke.edu/programs/undergrad.

All applications for undergraduate studies at Duke University are submitted to the Office of Undergraduate Admissions, and admission is offered by Trinity College of Arts and Sciences or the Pratt School of Engineering. All applicants should contact the Office of Undergraduate Admissions or visit their web site, http://www.admissions.duke.edu.

Environmental Sciences and Policy (ENVIRON)

Professor Emily Klein, Director of Undergraduate Programs

Two majors are offered, leading to either the Bachelor of Arts degree in Environmental Sciences and Policy or the Bachelor of Science degree in Environmental Sciences within Trinity College of Arts and Sciences. A minor in Environmental Sciences and Policy also is offered.

The majors are administered by the Nicholas School of the Environment and Earth Sciences. Courses for the majors are taught by Nicholas School faculty and Duke professors in cooperating departments and schools. The degrees are administered by undergraduate
directors and advisory committees representing the various areas and cooperating
departments. For additional information, consult the program web site, at http://
www.nicholas.duke.edu/programs/undergrad.

Environmental Sciences and Policy (A.B. Degree)

The undergraduate major in environmental sciences and policy is offered within the
Bachelor of Arts degree to students interested in the interdisciplinary study of environmental
issues. The major permits students to combine studies in the natural sciences and
engineering with courses in social sciences and humanities around general focus areas and
themes. This major is designed for students with career objectives such as environmental
law, policy, science, management, or planning that require in-depth understanding of
environmental issues that cross disciplinary boundaries. The prerequisites for the A.B.
degree stress a firm foundation in basic natural, environmental, and social science areas.
An intermediate core course focuses on local, regional, and global case studies taught by
interdisciplinary teams of faculty. Upper-level courses are selected in consultation with
advisors to match a specific environmental theme or career objective. The upper-level
curriculum includes a course in probability and statistics, a policy course, and an
independent study, internship, or field experience. At least two courses in the upper-level
curriculum must be selected from approved lists in each of the social sciences/humanities
and sciences/engineering areas.

For the A.B. Degree

Corequisites

The following courses or their equivalents (for example, Advanced Placement credit)
are required. Approval to substitute courses taken at other universities must be obtained
from the director of undergraduate studies in the department offering the course. Some of
these courses are prerequisite to some upper-level courses in this major.

- Environment 25. Introduction to Environmental Sciences and Policy
- Biology 25L. Principles of Biology
- A Biodiversity course: Biology 26AL or 26BL. Diversity of Life, or 140. Plant Diversity, or 176. Marine Invertebrate Zoology
- Chemistry 21L and 22L. Advanced General Chemistry
- Economics 51D or equivalent. Economic Principles
- Earth and Ocean Sciences 11. The Dynamic Earth, or Earth and Ocean Sciences 12. The Dynamic Oceans (C-L: Biology 53)
- Mathematics 31 and 32. Introductory Calculus I and II

Major Requirements

1. Intermediate Core Course: Environment 101
2. Environmental Policy. One course from an approved list of environmental policy
courses. Approved courses include:
 - Public Policy Studies 107/Political Science 107: Comparative Environmental Policies.
 - Environment 149/Public Policy Studies 149: United States Environmental Policy.
 - Public Policy 147/Political Science 147: Environmental Politics and Policies in the Developing World.
 - Political Science 148/Public Policy Studies 143: Environmental Policies Beyond Borders.
 - Public Policy Studies 197/Environment 276: Marine Policy.
 - Environment 273: Marine Fisheries Policy
3. Probability and Statistics. (Statistics 101, 102, 103, or equivalent)
4. Focused Study. Five upper-level courses proposed by students in consultation with
 their advisors to fit a particular theme or career objective. At least two of these
courses must be selected from approved lists in each of the social sciences/
humanities and sciences/engineering areas. These lists are available from the director of undergraduate studies of the program. One course must be either an upper-level seminar, a senior capstone course, or a 200-level course.

Independent Study/Internship/Field Experience. Students complete an approved independent study, internship, or field experience which may or may not include course credit toward upper-level requirements. A letter must be submitted to the director of undergraduate studies from the faculty member, advisor, or supervisor verifying completion of the requirement.

Environmental Sciences (B.S. Degree)

The undergraduate major in environmental sciences is offered within the Bachelor of Science degree to students interested in a scientific perspective on environmental issues. The major is designed to encourage breadth in the physical and life sciences and depth in a chosen area of scientific concentration. This major is designed for students with career objectives in environmental sciences, industry or management that require a strong scientific background, or for students intending to pursue graduate degrees in environmental sciences. The major also merges well with pre-medical requirements. The prerequisites for the B.S. degree stress a firm foundation in the physical and life sciences and mathematics. The major requirements include five core courses selected from six course options that focus on the biosphere, the atmosphere, the hydrosphere, the solid earth, chemical cycling, and the interface between humans and the environment. The major also includes a course in probability and statistics. The Focused Study consists of three upper-level natural science, engineering or mathematics courses proposed by the student in consultation with their advisor to form a concentration area.

For the B.S. Degree

Corequisites

The following courses or their equivalents (for example, Advanced Placement credit) are required. Approval to substitute course taken at other universities must be obtained from the director of undergraduate studies in the department offering the course. Some of these courses are prerequisites to upper-level courses in this major.

- Biology 25L. Principles of Biology
- Chemistry 21L and 22L. Advanced General Chemistry
- Physics 41L and 42L; or Physics 51L and 52L; or Physics 53L and 54L (Chemistry 151L may be substituted for the second semester of Physics)
- Mathematics 31 and 32. Introductory Calculus I and II
- Environment 25: Introduction to Environmental Science and Policy; Earth and Ocean Sciences 11: The Dynamic Earth; or Earth and Ocean Sciences 12. The Dynamic Oceans (C-L: Biology 53)

Major Requirements

1. Five Core Courses selected from the following six courses or course lists:
 A. The Fluid Earth (Earth and Ocean Sciences 102)
 B. Environmental Chemistry and Toxicology (Environment 160)
 C. The Evolving Earth and Life (Earth and Ocean Sciences 107L)
 D. Hydrogeology (Earth and Ocean Sciences 123)
 E. One course from an approved list of ecology courses. Approved course list includes:
 Biology 110. Ecology
 Biology 116. Ecology and Evolution
F. One course from an approved list of courses that focus on the interface between humans and the environment. Approved course list includes:

- Environment 101. Introduction to Environmental Sciences and Policy
- Environment 103. Conserving the Variety of Life on Earth
- Environment 122. Climate-related Hazards and Humanity (Bermuda)
- Environment 149/Public Policy Studies 149. United States Environmental Policy
- Environment 140. Scientist's Perspective on Environmental Principles, Policy, Legislation (Bermuda)
- Biology 109'. Conservation Biology and Policy (Beaufort)
- Environment 185. Senior Capstone Course
- Economics 163. Economics of the Environment.
- Philosophy 115. Applied Environmental Ethics

2. Probability and Statistics (Statistics 101, 102, 103, or equivalent)

3. Focused Study. Three upper-level natural science, engineering or mathematics courses proposed by students in consultation with their advisor to form a concentration area. Student will submit to their advisor, usually at the beginning of their junior year, a written rationale for the courses selected.

Independent Study, Internship, or Field Experience. Students pursuing the B.S. degree complete an independent study, internship, or a field experience related to their proposed course of study. The director's office, in collaboration with Duke's Career Development and Counseling Office, maintains information on available internships. Field experiences may include a semester or summer session at the Duke University Marine Laboratory, participation in field-oriented study abroad programs, or studies at approved field laboratories.

The Minor

Environmental Sciences and Policy

Requirements: Five courses: two core courses (Environment 25 and Environment 101); the remaining three courses selected from 100-level or above Environment courses, which may include one substitution of a course in another department.

Graduation with Distinction

The Environmental Sciences and Policy and Environmental Sciences majors both offer a Graduation with Distinction option. Interested students with a 3.0 grade point average overall and 3.2 grade point average in the Environmental Sciences/Policy major should apply by the beginning of their senior year. The application should include a written request to the director of undergraduate studies describing the proposed research project, and identifying a faculty evaluation committee, consisting of a primary faculty advisor who has agreed to supervise the research, and two additional faculty members. Participants write a substantial paper describing their completed research, which is evaluated by the faculty committee. Graduation with Distinction candidates normally enroll in an Independent Study course (ENV 191/192) supervised by the research advisor; this course cannot be used to satisfy the major requirements. For additional information and an application form, contact
Earth and Ocean Sciences (EOS)
Professor Susan Lozier, Director of Undergraduate Studies

Two majors are offered, leading to either the Bachelor of Arts degree or the Bachelor of Science degree in Earth and Ocean Sciences within Trinity College of Arts and Sciences. A minor in Earth and Ocean Sciences also is offered.

The majors are administered by the Nicholas School of the Environment and Earth Sciences. Courses for the major include introductory and advanced courses in coastal geology, environmental geology, hydrology, geochemistry, geomorphology, geophysics, oceanography, paleontology, petrology, sedimentology, and marine geology. A Bachelor of Science degree is offered for those students wishing to pursue further studies in the earth and ocean sciences, or for those who intend to work professionally in environmental earth sciences. A Bachelor of Arts degree is offered for those students who do not intend to pursue the earth sciences professionally, but wish to understand more fully local and global earth and environmental issues. For additional information, consult the program web site, at http://www.nicholas.duke.edu/programs/undergrad.

For the A.B. Degree

The A.B. degree in Earth and Ocean Sciences is designed as a flexible major for students interested in understanding how the earth, atmosphere and oceans work. The major is intended to provide a general knowledge of scientific issues that shape and control the environment in which we live. It is not intended for students who plan to pursue advanced education in the earth and ocean sciences, or to become professional geologists or environmental scientists.

Required courses include Earth and Ocean Sciences 11, or 12, followed by six Earth and Ocean Sciences courses of which five must be 100-level or higher, and three additional 100-level or higher courses in either Earth and Ocean Sciences or related fields (physics, mathematics, biology, biological anthropology and anatomy, environment), as approved by the director of undergraduate studies.

Concentration in Natural History. Students may elect to complete the requirements in the area of Natural History; intended for students interested in an integrative study of topics selected from ecology, botany, zoology, anthropology, history, hydrology, geology, oceanography, and the environment. For information on this area of concentration see the director of undergraduate studies.

For the B.S. Degree

The B.S. degree provides a background suitable for subsequent graduate or professional work in the earth and ocean sciences.

Prerequisites. Earth and Ocean Sciences 11 and 12; Chemistry 21L and 22L; Mathematics 31L and 32L; Physics 53L (or Physics 51L); Biology 25L.

Major requirements. Earth and Ocean Sciences 101, 102, 103, and 107, followed by five additional Earth and Ocean Sciences courses at the 100-level, including one field-
oriented class. Up to two courses from a related field (biology, chemistry, physics, environment, or mathematics) may be substituted with the approval of the director of undergraduate studies.

THE MINOR

The Division of Earth and Ocean Sciences offers an option for a minor in earth and ocean sciences.

Minor Requirements. Earth and Ocean Sciences 11, 12, and four additional earth and ocean sciences courses, three of which must be 100-level or higher.

Graduation with Distinction

The Earth and Ocean Science majors both offer a Graduation with Distinction option. Interested students with a 3.0 grade point average overall and 3.2 grade point average in the major should apply by the beginning of their senior year. The application should include a written request to the director of undergraduate studies describing the proposed research project, and identifying a faculty evaluation committee, consisting of a primary faculty advisor who has agreed to supervise the research, and two additional faculty members. Participants write a substantial paper describing their completed research, which is evaluated by the faculty committee. Graduation with Distinction candidates normally enroll in an Independent Study course (EOS 191/192) supervised by the research advisor; this course cannot be used to satisfy the major requirements. For additional information and an application form, contact the director of undergraduate programs or visit http://www.nicholas.duke.edu/people/students/undergrad/distinction.html.

Study at the Duke University Marine Laboratory

All undergraduate students at Duke, no matter what their major, have the opportunity to study at the Duke University Marine Laboratory in Beaufort, N.C. Academic programs include a fall semester, a spring semester and two five-week summer terms. The spring semester offers the option to participate in the Beaufort-to-Bermuda program and other study-abroad course work including field trips to Singapore, Trinidad, Hawaii. The academic programs integrate classroom lectures and laboratories with direct field and shipboard experiences. For more information, visit the Duke Marine Lab web site at http:/www.nicholas.duke.edu/marinelab

A semester or summer term of coursework at the Duke Marine Laboratory is a core requirement of the B.S. major in Biology with a concentration in Marine Biology. (For more information see http://www.biology.duke.edu/undergrad/conc/marine.html)

Advising

Students choose or are assigned to a faculty advisor based on students' general areas of interest. The program encourages close relationships between faculty and students with convergent interests.

The Nicholas School also maintains an Office of Undergraduate Programs in 107 Old Chemistry Building (e-mail: undergrad@nicholas.duke.edu). The office provides useful information pertaining to major requirements and extracurricular opportunities relating to environmental sciences and policy and earth and ocean sciences. The office also maintains a Web site with up-to-date information about major requirements at http://www.nicholas.duke.edu/programs/undergrad.
Financial Aid

The Duke Undergraduate Financial Aid Office handles all financial aid matters, and the Undergraduate Bulletin includes information about scholarships available to Duke undergraduates as well as loans and tuition payment plans.

Marine Lab Scholarships

The following scholarships are available to undergraduates wishing to study at the Duke University Marine Laboratory.

Lawrence E. Blanchard Society of Scholars and Fellows
This fund, established by Mr. and Mrs. Lawrence E. Blanchard and Mr. and Mrs. Charles F. Blanchard and later enhanced by Charles and Bernard Blanchard, provides scholarships to undergraduates and fellowships to graduate students studying at the Duke University Marine Laboratory.

Bookhout Research Scholarship
Each summer the Marine Laboratory offers a scholarship for a student interested in course work and research related to the invertebrate zoology of marine animals. The scholarship provides for room and board at the Marine Laboratory during the two summer terms, a stipend for living expenses, full tuition for the first summer term, and funds for research supplies. The student takes one to three courses during the first summer term and undertakes a research internship on some aspect of the biology of invertebrate animals during the second term.

The scholarship is restricted to a rising junior or senior student from an accredited college or university or a student who will be a matriculating graduate student in the following fall. For additional information about the scholarship and application requirements and deadlines, students are encouraged to contact Dr. William Kirby-Smith (wwks@duke.edu; phone 252-504-7577).

August A. Busch Jr. Memorial Wholesalers Scholarship Endowment
Established by friends and colleagues of Mr. Busch, this fund provides scholarships to undergraduates studying at the Marine Lab.

Laura J. Grierson Memorial Scholarship
Established by David and Lynn Perry and Palmer L. Whisenant, this fund provides scholarships to undergraduates engaged in independent studies at the Marine Lab.

Lawrence I'Anson Jr. Scholarship
Established by Captain Lawrence I'Anson Jr., this scholarship is for summer students with financial need studying at the Marine Lab.

Richard C. and Linda G. Seale Scholarship
Established by Dick and Linda Seale, this scholarship is for students studying at the Marine Lab, with preference given to Denison University students.

Harvey W. Smith Undergraduate Scholarship
Established by the estate of Evelyn Chadwick Smith, this scholarship provides financial aid to undergraduates studying at the Marine Lab.

Deborah Susan Steer Scholarship
Established by Mr. and Mrs. John W. Steer, this scholarship is for undergraduates studying at the Marine Lab, with priority given to summer students.

Wade Family Scholarship
Established by Charles B. Wade Jr., this scholarship provides financial aid to undergraduates studying at the Marine Lab.
The Stanback Conservation Internship Program

The Nicholas School offers paid summer conservation internship opportunities to any currently enrolled Duke undergraduate student through the Stanback Conservation Internship Program. Made possible by the support of Mr. and Mrs. Fred Stanback, the program provides students with significant work experience in grassroots conservation, advocacy, applied resource management or environmental policy. More information is available at http://www.nicholas.duke.edu/career/stanback.

Academic Recognition

Estwing Award

The Estwing Award is given annually to a senior in the Division of Earth and Ocean Sciences, in recognition of outstanding achievement in the earth and ocean sciences.

Sara LaBoskey Award

The Sara LaBoskey Award is given annually by the Nicholas School to a graduating senior in environmental science/policy in recognition of personal integrity and academic excellence. The award was established by Vicki and Peter LaBoskey in memory of their daughter, Sara LaBoskey.

Thomas V. Laska Memorial Award

The Thomas V. Laska Memorial Award is given annually by the Division of Earth and Ocean Sciences of the Nicholas School to a graduating senior in recognition of outstanding achievement and promise for future success in earth and ocean sciences. The recipient receives a special gift, and his/her name is engraved on a granite tablet located in the Divisional Office. The award was established by Andrew J. and Vera Laska in memory of their son, Thomas Vaclav Laska.

Teacher Certification

Students pursuing environment or earth and ocean science majors who are interested in teaching in secondary schools are encouraged to earn a comprehensive science-teaching certificate in addition to the bachelor’s degree. The teaching certificate, which is earned by fulfilling requirements prescribed by the state of North Carolina, is generally accepted in most of the fifty states by reciprocal agreement. In addition to completion of any of the major tracks, the requirements for the comprehensive science teaching certificate include coursework in biology, chemistry and physics, an appropriate course in psychology and several courses in education. The last semester of the senior year is devoted to a student-teaching program, including two special accelerated courses and ten weeks of full-time teaching and observation in local schools, working with a certified teacher and with Duke faculty.

Students considering secondary school teaching should contact the Program in Education for more information on this option and its requirements.

The Cooperative College 3-2 Program

(Combined Undergraduate and Masters degrees)

The Cooperative College Program (3-2 program) allows qualified students to receive an undergraduate and master’s degree by spending three years at a cooperating undergraduate institution (including Duke) and two years at the Nicholas School of the Environment and Earth Sciences. Students can pursue either of two master’s degrees, the Master of Environmental Management (M.E.M) or Master of Forestry (M.F.). Although the program is designed to accommodate a wide range of undergraduate backgrounds, it is best
suited to majors in one of the natural or social sciences, pre-engineering, business, natural resources or environmental science.

The baccalaureate degree is awarded by the undergraduate school after the student has spent at least two full-time semesters at Duke and earned enough units to satisfy the requirements of the undergraduate institution. After four semesters at Duke, during which a minimum of 48 units of credit is earned, students will receive one of the professional master’s degrees.

A student interested in entering the Cooperative College Program should attend one of the participating undergraduate schools, a list of which is available from the Office of Enrollment Services. Students should design their three years of undergraduate coursework to include prerequisite courses for the Nicholas School as well as undergraduate requirements. Students from the cooperative colleges may also enter Duke after completing a baccalaureate degree. In all cases, applicants from cooperative institutions are evaluated on the same basis as other applicants to the school.
Professional Graduate Degree Programs
Professional Graduate Degree Programs

The Nicholas School of the Environment and Earth Sciences offers two professional graduate degrees, the Master of Environmental Management and the Master of Forestry, which prepare students for careers in a wide variety of employment settings, including government agencies, private industry, nonprofit organizations and international organizations.

The Distinction between Professional and Doctoral Degrees

Professional graduate programs such as the Master of Environmental Management (M.E.M.) and Master of Forestry (M.F.) differ from traditional M.S./Ph.D. programs both in terms of the career goals of students and in terms of curricula. The M.E.M. and M.F. are normally considered “terminal” degrees, equipping graduates to begin or advance in a professional career related to environmental policy and management. Most M.E.M./M.F. graduates hold management and staff positions in which they are expected to compile, analyze and interpret natural and social science information and then use it to formulate a plan for action.

The M.E.M./M.F. curriculum reflects these employment goals. The emphasis is on coursework that provides a strong scientific and analytical foundation for management-oriented decision making. A Master’s Project supplements the coursework by allowing students to demonstrate their organizational and analytical skills in solving an environmental management problem in their areas of specialization.

Although the M.E.M./M.F. degrees are not designed as precursors to the Ph.D. degree, students who later choose to enter Ph.D. programs suffer no disadvantage from taking a professional master’s degree first.

Students desiring to concentrate their study and research within a well-defined subject area and planning for careers primarily in university teaching and research are urged to pursue the doctoral (Ph.D) degree. The Ph.D. emphasizes disciplinary research, and all Nicholas School faculty train doctoral students at Duke. Prospective Ph.D. students should consult the chapter in this Bulletin on doctoral degrees as well as the Bulletin of the Graduate School of Duke University (http://registrar.duke.edu/bulletins/Graduate). For more detailed information, visit the Graduate School Web site at http://www.gradschool.duke.edu.

Professional Masters Degrees

The Master of Environmental Management degree is designed to help students develop expertise in the management of the natural environment for human use with minimum deterioration of ecosystem stability. M.E.M. degree candidates choose one of these programs of study:

- Coastal Environmental Management
- Conservation Science and Policy
- Ecosystem Science and Management
- Energy and Environment
- Environmental Economics and Policy
- Environmental Health and Security
- Global Environmental Change
- Water and Air Resources
A ninth program of study, Forest Resource Management, is available to students seeking the Master of Forestry (M.F.) degree. The M.F. is accredited by the Society of American Foresters.

Students may use electives and additional coursework to accommodate a second emphasis in one of the other program concentrations offered within the school.

Program Requirements

Each of the Nicholas School’s professional programs requires the completion of 48 units of graduate credit. These units are distributed among a set of core courses required by each program, quantitative courses, electives, a Master’s Project and seminars relevant to the program’s objectives. More specific information about requirements for any one of the programs may be obtained from the Office of Enrollment Services. With advisor approval, students may count up to 6 credits of coursework at the 100-level with a grade of at least B toward their degree requirements.

Prerequisites

All programs require a semester each of college calculus and applied statistics as prerequisites. Most programs require additional prerequisites, as described later in this chapter.

Major (Core) Courses

Each program requires a series of core courses that provide essential background training relevant to the program’s objectives, as outlined in the program descriptions below.

Quantitative and Analytical Courses

All programs require six to 12 units of courses stressing quantitative and analytical methods.

Elective Courses

Elective courses are available to give the student flexibility in developing his or her course of study. Most programs use some of these courses to add depth to the major area of study or to develop a second area of expertise. Students who select the Environmental Economics and Policy program must use at least three of their elective courses to broaden their understanding of environmental science.

Master’s Project

A Master’s Project constituting four to six units of credit is required. These projects take the form of individual or small-group analysis of a problem in natural resource management, offering alternative solutions for better management of the environment. The results of the Master’s Project are presented orally in a symposium held near the end of each semester and in a written document that is presented to the student’s advisor before graduation.

Seminars

All students are required to participate in seminars in their program area for one unit of credit. These seminars prepare students for the Master’s Project.

Certificates

Certificate programs allow students to achieve an area of special expertise by completing a series of courses and projects. At present, the Nicholas School offers certificates in Geospatial Analysis, and in the National Environmental Policy Act (offered via participation in intensive courses).
In addition, Nicholas School students sometimes complete certificate programs in other schools or departments, such as the International Development Policy or Health Policy certificates offered by the Terry Sanford Institute for Public Policy.

Experiential Learning

To complement academic coursework, the Nicholas School also offers experiential learning in environmental management. This includes short courses, field trips and practical learning experiences guided by practicing environmental professionals from the energy industry, forestry and from conservation. These practical learning experiences tie more traditional classroom learning to the work environments that professional degree students will be entering.

Professional Skills Development

In addition to regular courses and seminars, the Nicholas School of the Environment and Earth Sciences offers a series of optional lectures and workshops to prepare students for professional employment. Topics for these modules include field and laboratory techniques, communications skills, project organization and management and teamwork skills. The director of professional studies makes the schedule and detailed information concerning the series available to students during the academic year. A modest matching fund is available to help students defray the cost of skills training offered outside the school, such as the Certificate in Nonprofit Management offered by the Duke Continuing Education program.

Professional Programs

Coastal Environmental Management

The Coastal Environmental Management (CEM) program provides a scientifically rigorous understanding of coastal environments, considered at the global, national and local level, of physical and biological processes controlling those environments, and of the human behaviors and policies that affect and are affected by those environments and processes. The specific aim of the program is to train scientifically informed professionals to fill coastal policy and management, research or advocacy positions in federal, state and local agencies, industry, consulting firms and nonprofit organizations. The program also provides a firm foundation for future Ph.D. studies.

The first year of the program is spent on the Durham campus fulfilling the required courses in areas such as natural resource economics, general environmental policy, ecology, oceanography and methodological skills. The second year is usually spent in residence at the Duke University Marine Laboratory in Beaufort, taking courses in the natural, social and policy sciences specific to the coastal and marine environment, and focusing on the production of the Master’s Project. The Marine Laboratory provides an ideal setting for the study of natural and social scientific phenomena associated with coastal and marine environments, and for interaction with coastal and marine constituencies and policy makers in the application of science to policy. Potentials for participation in the policy-making process are emphasized throughout the program.

Prerequisites: calculus, statistics, introductory economics including microeconomics.

Core Courses: Environment 276, Marine Policy; Environment 270, Resource and Environmental Economics; one additional policy course; one ecology course and two ocean science courses.

Conservation Science and Policy

The defining feature of the Conservation Science and Policy (CSM) track is a two-dimensional structure, consisting of a Concentration Area and an Approach. The
Concentration Area defines the level or scale of a problem in conservation biology, for instance the preservation of an endangered species or the preservation and management of a critical ecosystem. The Approach defines a methodological focus and tools that are used to solve a particular problem in conservation biology, generally the problem defined in the Concentration Area. Examples of approaches include field-based methods with an emphasis on natural history, geospatial analysis (emphasizing geographic information systems and remote sensing), community-based methods involving stakeholder participation, and modeling (statistical and simulation). In combination, these choices define a career track and a planning matrix for coursework and research experience for the M.E.M. degree.

Prerequisites: calculus, statistics, principles of ecology.

Core courses: Coursework in this program is designed individually for each student, with the help of his/her advisor. The core includes Environment 203, Conservation Biology; two natural science courses and one social science course related to conservation. For the Approach, four courses are required, including one in statistics, two courses from one of the focal methodologies identified above and one from a complementary methodology.

Ecosystem Science and Management
The Ecosystem Science and Management program (ESM) considers the management of large areas of terrestrial, aquatic and marine ecosystems for sustainable ecosystem function (e.g., productivity, water quality) in the face of human demands.

As in the program in Conservation Science and Policy, the defining feature of this program is a two-dimensional structure, consisting of a Concentration Area and an Approach. The Concentration defines a topical area, usually a particular ecosystem (forests, wetlands, coastal/marine or tropics). The Approach defines a methodological focus and tools that are used to explore a problem in the topical area. Examples of approaches include field-based methods with an emphasis on natural history, geospatial analysis (emphasizing geographic information systems and remote sensing), community-based methods involving stakeholder participation, and modeling (statistical and simulation). In combination, these choices define a career track and a planning matrix for coursework and research experience for the M.E.M. degree.

Students interested in forest ecosystems have a choice of (a) a forest concentration under Ecosystem Science and Management leading to the M.E.M. degree; (b) the Forest Resource Management program leading to the M.F. degree (see below); or (c) a combination of the two, leading to both degrees in five semesters (see information on the joint M.E.M./M.F. degree later in this chapter).

Prerequisites: calculus, statistics, principles of ecology.

Core courses: The core includes Environment 320, Ecosystem Management; two natural science courses in the chosen ecosystem and a related social science course. For the Approach, four courses are required, including one in statistics, two in one of the focal methodologies described above and one in a complementary methodology.

Energy and Environment
The Energy and Environment (EE) program aims to provide students with the skills and knowledge necessary to effectively address energy and environmental challenges. Over the course of the program, students will gain: a broad perspective on the current energy system and future alternatives; a fundamental understanding of science and technology as it relates to energy and environment; background in the economics, policy and business of energy; first-hand exposure to the energy sector and energy leaders; critical skills in data analysis and modeling; and, experience with communication, facilitation, project management and teamwork.
Energy use is one of the most complex and multi-faceted problems influencing the future of the environment. Students wishing to complete the Energy and Environment concentration will need to complete coursework that addresses energy across multiple disciplines, covering science and technology, economics, business, policy and law. The concentration is organized along four broad themes: Energy Resources and Technology; Environmental Science; Markets and Policy; and, Tools. The curriculum requires students to take a Core Course, courses in Energy Resources and Technology; Environmental Science; Markets and Policy; Tools; Energy and general electives; and the master’s seminar and project.

Prerequisites: calculus, statistics, introductory microeconomics (or general economics that focuses on microeconomics rather than macroeconomics).

Core courses: Environment 211 Energy and the Environment; Earth and Ocean Sciences 222 The Geology Side of Energy; Environment 298.23 Energy Technology.

Environmental Economics and Policy

The Environmental Economics and Policy (EEP) program is designed to train environmental decision makers and those who advise them. The program emphasizes the basic methods needed by the professional for analyzing existing policies and for testing the possible outcome of new environmental and resource policies being considered by public and private agencies. The program is highly analytical and is oriented toward the analysis of contemporary national and international environmental problems.

Decision making in natural resource and environmental policy requires mastery of three broad areas of knowledge: the basic sciences pertaining to a natural resource or an environmental phenomenon; the relevant disciplines in the social sciences; and the quantitative methods required for using knowledge from the physical, biological and social sciences to arrive at a decision. Students choose one of three areas of emphasis: economics, policy and institutions or business and the environment. Four major elective courses and three quantitative courses support the area of emphasis. Three science courses develop a resource area for applying social science analysis, e.g., conservation or water resources.

Prerequisites: calculus, statistics, introductory economics including microeconomics.

Core Courses. Environment 270 Resource and Environmental Economics; Environment 274 Resource and Environmental Policy, and one of the following: Law 235 Environmental Law or Environment 281 Resource and Environmental Law.

Environmental Health and Security

The program in Environmental Health and Security (EHS) trains students to manage human-dominated environments to minimize threats to human health and safety, to recognize and minimize the release of toxic substances to the environment and to anticipate threats to natural ecosystems that may stem from direct or inadvertent human actions. Students receive special training in environmental chemistry, environmental genomics and environmental epidemiology. A special emphasis is placed on risk assessment. Some students may pursue special studies of the built environment and geological hazards that may underlie biotic activity in human-dominated systems (earthquakes, extreme weather events, and catastrophic failures of engineered structures). The goal of the program is to produce scientists and environmental managers with a solid foundation in the principles underlying pollutant fates, hazards and impacts, as well as a firm grasp of modern approaches for evaluating the effects of specific instances of environmental contamination and catastrophes and for making management decisions based on quantitative analysis.

Prerequisites: calculus, statistics, biology including human or animal physiology, chemistry, organic chemistry.
Core courses: Environment 160, Environmental Chemistry and Toxicology; Environment 298.02, Environmental Epidemiology; Environment 246, Survey of Environmental and Occupational Health; one additional course in ecology or global change; three courses in specialization/focus, with at least one course emphasizing human health and one emphasizing environmental health.

Global Environmental Change

The program in Global Environmental Change (GEC) trains students to understand human impacts on the Earth that transcend national boundaries, yielding long-term changes in the physical properties of the planet (e.g., climate change), its chemistry (e.g., nitrogen pollution) and the health of its biota (e.g., fisheries decline). A special emphasis is given to an examination of past changes in the Earth’s condition to provide context for understanding current and future human impacts. Emphasis is also placed on analytical methods that can be applied to environmental problems that are manifest in a variety of spatial and temporal scales. Students couple study of basic earth system science with an understanding and analysis of national and international policy options that might be brought to bear on these global environmental problems. Thus, at least four courses must be completed from a list of approved classes in global environmental policy and law. The objective is to train policy analysts who will work at the highest levels of government and the corporate world to help address global environmental problems and provide innovative solutions to them.

Prerequisites: calculus, statistics; earth science and biology recommended.

Core courses: Earth and Ocean Sciences 300, Earth Processes and Environment; Earth and Ocean Sciences 211 The Climate System; Earth and Ocean Sciences 255, Climate Change, two other courses in basic global change science, three courses in the area of analytic methods and tools, and four courses in management.

Water and Air Resources

The program in Water and Air Resources (WAR) provides students with a scientific understanding of the basic physical, chemical and biological processes affecting these natural resources and trains students to apply this understanding, together with quantitative, analytical and statistical techniques, to the management of air and water resources. Emphasis is placed on understanding a wide range of problems such as the effects of land resource management on water quality, hydrologic and climate processes, aquatic and atmospheric chemistry, air pollution and its effect on aquatic and terrestrial systems and the regulatory framework within which these resources are managed.

Coursework and other training in the program cover basic physical and chemical processes relevant to hydrologic and atmospheric sciences, methods of quantitative and statistical analysis and methods of management and decision making. The basic processes emphasized are watershed hydrology; stream and lake water quality; aquatic and atmospheric chemistry; general meteorology and climatology; and the origins, transport and fate of aquatic and atmospheric pollutants. Quantitative analysis techniques include statistical and numerical methods, probabilistic and deterministic models and optimization and simulation methods. These courses are integrated with classes in economic and policy analysis.

Graduates of the program have the skills to become analysts or consultants for private industry and public agencies concerned with understanding the management and protection of water and air resources. These employers include government agencies, public utilities, consulting firms, and hydrologic, atmospheric or environmental research centers.

Prerequisites: calculus, statistics, introductory physics and chemistry
Core Courses: At least one course from among those approved in each of four areas: physical sciences, chemical sciences, biological or ecological sciences and social sciences; three additional courses in an area of concentration (e.g., water, air) and three courses in quantitative and analytical methods related to resource management.

Forest Resource Management

The Forest Resource Management (FRM) program integrates forest ecology and management within an educational program that emphasizes related environmental fields. This program leads to the receipt of the Master of Forestry degree (M.F.). The program provides knowledge of basic forest ecology and ecological management of forests for a variety of uses, including nontraditional forest products and conservation. This distinctive approach derives from a core set of forestry courses—in sampling, measurement, dendrology, silviculture and ecology—combined with electives in resource-oriented courses (such as soils, hydrology, air and water quality, biological conservation and physiology); statistical analysis and modeling; and resource economics and policy. The Duke Forest serves as an outdoor laboratory in many of these courses.

The focus of the Forest Resource Management program is problem solving in complex ecological and management systems. Within the program, students may acquire skills that qualify them for positions in industry, conservation organizations, government agencies, nonprofit organizations and other groups involved with the use and conservation of forests. The M.F. program is accredited by the Society of American Foresters, which is recognized by the Council on Postsecondary Accreditation and the Department of Education as the accrediting body for forestry educational programs in the United States. Students can develop additional credentials for employment by jointly completing the M.F. degree and a Master of Environmental Management degree in the Nicholas School of the Environment and Earth Sciences or other concurrent degree programs (i.e., Business, Law, or Public Policy) at Duke, as described in the section that follows.

Students who have an undergraduate degree in forestry may earn a Master of Forestry degree with only 30 units of credit. To be admitted with the one-year degree option, the student must have received a Bachelor of Science in Forestry degree from an accredited forestry school. The student must spend a minimum of two semesters in residence at Duke.

Prerequisites: statistics, calculus, principles of ecology, introductory economics including microeconomics.

Core Courses. Environment 201 Forest Resources Field Skills; Environment 206 Forest Vegetation Sampling; Environment 213 Forest Ecosystems; Environment 205L Silviculture; Environment 320 Ecosystem Management; forest or resource economics; policy or administration and professional ethics.

Special Tracks for Practicing Professionals

The Nicholas School of the Environment and Earth Sciences offers two options for environmental professionals who wish to receive a professional degree. The Senior Professional Program (SPP) allows students to receive a Master of Environmental Management or Master of Forestry degree in a compressed program with at least one semester spent on campus. SPP students choose one of the program tracks available to all traditional M.E.M and M.F. students.

The Duke Environmental Leadership Master of Environmental Management (DEL-MEM) is for mid-career professionals with leadership potential. The DEL-MEM program has a major online component and thus requires minimal time on campus, making it feasible for professionals to pursue the degree while working full-time.
42 Professional Graduate Degree Programs
Senior Professional Program

The Senior Professional Program is a special master’s degree track for candidates with at least five years of work experience in an environmental field. Those who qualify may be admitted to the Nicholas School to complete a Master of Environmental Management or Master of Forestry degree with reduced credit and residency requirements.

These professional degree candidates must spend at least one semester at Duke enrolled in regular graduate-level courses. Up to 15 credit hours are taken during this semester. The remaining credit hours required for a M.E.M. or M.F. degree (usually 15 additional credits) may be earned through another semester in residence or through continuing education intensive courses, independent study and the Master’s Project. Candidates have five years from the date of acceptance to complete the credit requirements.

The student’s advisor—upon evaluation of the individual’s previous education, work experience and career goals—establishes specific degree requirements for students in the Senior Professional Program, including required courses and the number of academic units necessary to complete the degree. At least 30 credit hours are required.

Duke Environmental Leadership—Master of Environmental Management

The Duke Environmental Leadership Master of Environmental Management (DEL-MEM) degree is a two-year, 30-credit program designed for mid-career professionals with a minimum of five years’ experience. The DEL-MEM focuses on interdisciplinary and global themes, strategic approaches to environmental management, communication and effective leadership. Offered through online and on-campus work, the DEL-MEM allows professionals to pursue a master’s degree while maintaining a commitment to job and family.

Program Format

The DEL-MEM combines distance-learning courses and weeklong intensive on-campus sessions. These on-campus sessions give participants an opportunity to experience the campus environment, meet fellow M.E.M. students and interact directly with faculty. Including orientation, students are required to come to the Duke campus five times during their studies. Between campus visits, and to complement the face-to-face sessions, students complete individual and group coursework online through chat sessions, online meetings, bulletin boards, videoconferences, conference calls and other advanced interactive technologies.

Prerequisites

Five years of relevant work experiences is a prerequisite for the program. No specific courses are required to apply.

Major (Core) Courses

Core courses are offered in ecosystems science and management, economics of environmental management, environmental law and policy and program management for environmental professionals. Other required components include: a one-week orientation course on the Duke campus; a three-day environmental leadership module in Washington, DC, involving prominent leaders from the private, public and not-for-profit sectors; and a Master’s Project.

Elective Courses

Elective courses, developed around more specialized themes, are available to give the student flexibility in pursuing an area of interest. Independent studies and projects and one-credit intensive short courses may also be taken.
Master’s Project

A Master’s Project constituting four units of credit is required. These projects take the form of individual or small-group analysis of a problem in natural resource management, offering alternative solutions for better management of the environment. A project related to the student’s current employment is recommended, but not required. The results of the Master’s Project are presented orally on campus and in a written document that is approved by the student’s advisor before graduation.

Contact Information

For more information about the DEL-MEM program, contact the DEL Program Office at 919-613-8082 or E-mail del@nicholas.duke.edu. Or visit the web site at http://www.nicholas.duke.edu/del.

The Cooperative College (3-2) Program

The Cooperative College Program (3-2 program) allows qualified students to receive an undergraduate and master’s degree by spending three years at a cooperating undergraduate institution and two years at the Nicholas School of the Environment and Earth Sciences. Students can pursue either of two degrees, the Master of Environmental Management (M.E.M.) or Master of Forestry (M.F.). See chapter 2, Undergraduate Degree Programs, for more details about the program. Application procedures are described in Chapter 4, Academic Information for Professional Degree Students.

Concurrent Degrees

Master of Environmental Management and Master of Forestry

With careful planning of their curriculum, students can earn both the M.E.M. and the M.F. degrees concurrently. The requirements for earning both degrees are as follows:

1. The student must qualify for either the M.E.M. or M.F. degree by earning 48 units of credit under the requirements set forth in the previous section.

2. For the second degree, the student must complete an additional 24 units of study that, in combination with courses taken for the first degree, meet the substance of the requirements for the second degree. Two additional semesters in residence are normally required, although, with careful planning, the student may complete both professional degrees in a total of five semesters.

3. One Master’s Project should combine the two areas of study.

Determination of eligibility for the degrees will be made on an individual basis and will consider the educational background and objectives of the student.

Master of Business Administration

The techniques of management science are applied with increasing frequency in the management of natural resources, and they are also now commonly used in the analysis of environmental problems. To integrate training in these management techniques into the curriculum more effectively, the Nicholas School of the Environment and Earth Sciences has developed a cooperative arrangement with Duke’s Fuqua School of Business. At least three years of study are required to earn the combined degrees of Master of Environmental Management/Master of Business Administration or Master of Forestry/Master of Business Administration. At least 36 units of credit within the Nicholas School are required to receive the M.E.M. or M.F. degree; these include 4 to 6 units for the Master’s Project. A typical program sequence would involve spending the first year in the Nicholas School followed by a year in the Fuqua School of Business, and concluding with the final year of combined work in both schools. However, this sequence may be adjusted at a student’s request.
Students electing to pursue the M.E.M. jointly with the M.B.A. must complete requirements for both degrees before either degree will be awarded.

These concurrent degrees stress analytical reasoning and the basic methodologies of management science, while providing the student with knowledge of current problems in the natural resource industries, industrial ecology and sustainable business practices. The study of managerial economics, resource economics, organization theory and management, resource management, the legal environment and the public policy aspects of resource industries form a substantial component of each degree.

Because of the academic demands of these degrees, those entering without the necessary analytical skills or life science background may be required to take additional work beyond that specified.

Students who wish to undertake both the Master of Environmental Management or Master of Forestry and Master of Business Administration degrees must apply to and be accepted by each of the respective schools. For information on the Master of Business Administration degree, the prospective student should write to the Fuqua School of Business, Admissions Office, Duke University, Box 90104, Durham, NC 27708-0104, or visit the Fuqua Web site at http://www.fuqua.duke.edu.

Master of Public Policy

As issues concerning natural resources and the environment have become increasingly significant to the nation, a corresponding need has developed for well-trained policy analysts who can provide timely and appropriate information and analysis to resource policy makers. Students interested in a professional degree in environmental policy at Duke have three options: (1) the Master of Environmental Management (M.E.M.) degree in the Environmental Economics and Policy program of the Nicholas School, described above; (2) a Master of Public Policy (M.P.P.) degree from the Terry Sanford Institute of Public Policy; or (3) joint M.E.M./M.P.P. degrees from the Nicholas School and the Sanford Institute. Doctoral candidates in the Nicholas School are also eligible to undertake the Master of Public Policy.

The joint M.E.M./M.P.P. degree provides training in the politics and economics of resource and environmental policy-making. Emphasis is placed on understanding the social and political forces involved, developing facility with quantitative and logical methods of forecasting and evaluating policy consequences. Knowledge of the uses and limitations of policy analysis and an awareness of the ethical dimensions of policy choice are also stressed.

The concurrent degree takes two and one-half to three years to complete. The first year is typically devoted to study in the Terry Sanford Institute of Public Policy, and the second year and a half are spent in the Nicholas School of the Environment and Earth Sciences. At least 36 units of credit within the Nicholas School are required to receive the M.E.M. or M.F. degree. A summer internship with a resource or environmental agency, or with a related legislative, judicial or interest group, is required for the policy degree. Students in this joint degree program complete both a Master’s Project for the policy degree and a separate Master’s Project for the M.E.M. or M.F. degree. Students electing to pursue the M.E.M. jointly with the M.P.P. must complete requirements for both degrees before either degree will be awarded.

Students must apply to and be accepted by both the Nicholas School of the Environment and Earth Sciences and the Duke University Graduate School. For detailed information on the Public Policy degree, write to the Director of Graduate Studies, Terry Sanford Institute of Public Policy, Duke University, Box 90243, Durham, NC 27708-0243, or visit the Sanford Institute Web site at http://www.pubpol.duke.edu.
Juris Doctor in Environmental Law and Juris Doctor/M.A. Option

Environmental and natural resource issues increasingly require legal and regulatory knowledge for resolution. There is a growing demand for resource managers and scientists who have legal credentials; similarly, attorneys are facing more situations in which knowledge of natural resources and the environmental sciences is critical to the resolution of disputes. To satisfy these demands, the Nicholas School of the Environment and Earth Sciences and the School of Law have developed a cooperative arrangement to allow pursuit of concurrent Master of Environmental Management and Juris Doctor degrees.

For students in the concurrent M.E.M./J.D. program, the Nicholas School requires 36 units of credit, including a Master’s Project. The School of Law requires 84 units of law credit, 12 units of which may be satisfied through courses taken in the Nicholas School.

Typically, a student will complete the first year of study in the School of Law and the second in the Nicholas School of the Environment and Earth Sciences. During the third and fourth years, the student will take a combination of courses in both schools. M.E.M./J.D. candidates must apply to and be accepted by both the Nicholas School of the Environment and Earth Sciences and the School of Law. Students electing to pursue the M.E.M. jointly with the J.D. must complete requirements for both degrees before either degree will be awarded.

Students must apply to and be accepted by both the Nicholas School of the Environment and Earth Sciences and the School of Law. For information on the law degree, prospective students should write to the School of Law, Admissions Office, Duke University, Box 90393, Durham, NC 27708-0393, or visit the Law School Web site at http://www.law.duke.edu.

Additionally, the Duke University School of Law offers a unique program whereby students enrolled in the Law School may concurrently pursue a Master of Arts degree in a variety of subject areas, including environmental studies. Students who intend to focus their careers on law but who wish to supplement their legal education with continuing study of the environment may find this program of interest. Students pursuing the M.A. are governed by the regulations of the Graduate School but take their coursework alongside professional degree students.

Applicants to this program must file an application with the Law School at http://law.duke.edu/admis. The application is also reviewed by faculty in the Nicholas School, and admission is offered by the Law School and the Graduate School.

The J.D./M.A. program requires that students begin their studies in the summer and continue through the following six academic semesters. During that time students will earn 30 units of credit in the Graduate School, of which 24 must be graded, and 72 units in the School of Law. M.A. students complete an oral comprehensive examination in the Nicholas School but are not required to complete a Master’s Project. Further information is available from the Director of Graduate Studies of the Nicholas School.

Master of Arts in Teaching

Over the last several decades, international concern for protecting our ecosystems has led to an increased need to educate citizens on the challenges facing our environment. Numerous education programs are now aimed at K-12 students as well as the general population. Environmental education is of increasing importance to those who prepare to teach, particularly in the sciences. Duke’s concurrent degree program between the Nicholas School of the Environment and Earth Sciences and the Graduate School allows students to meet this challenge by earning a Master of Environmental Management (M.E.M.) and a Master of Arts in Teaching (M.A.T.) degree.
In this concurrent degree program, to earn the M.E.M. degree students must complete 36 units of credit in the Nicholas School, including a Master’s Project. For the M.A.T. degree, students will complete 30 units of credit, including a full-year teaching internship and all requirements for the North Carolina teaching licensure in comprehensive science at the high school level. Competencies required by the state will be met through undergraduate courses taken prior to admission to Duke, science courses taken as part of the M.A.T. or courses taken as part of the M.E.M.

Students will normally enroll in the M.A.T. program during the summer and then complete an academic year of student teaching and M.A.T. coursework prior to enrolling in the M.E.M. program for three semesters. Students electing to pursue the M.E.M. jointly with the M.A.T. must complete requirements for both degrees before either degree will be awarded.

Students must apply to and be accepted by both the Nicholas School of the Environment and Earth Sciences and the Graduate School of Duke University, citing the Master of Arts in Teaching program. Students admitted to the M.A.T. program in comprehensive science must hold an undergraduate degree in one of the natural sciences with significant undergraduate preparation in biology and chemistry. Organic chemistry is required.

Questions concerning the M.A.T. degree should be addressed to the Director of the Master of Arts in Teaching Program, Duke University, Box 90093, Durham, NC 27708-0093; telephone (919) 684-4353. Internet: http://www.duke.edu/web/MAT.

Concurrent Degrees with Other Universities

With the special permission of the faculty Education Committee and the dean of the Nicholas School of the Environment and Earth Sciences, students are permitted, on an individual basis, to establish concurrent degree programs with certified graduate degree programs either within or outside of Duke University. In the past, students have designed such programs with law schools, business schools and graduate engineering programs. As with the other concurrent degrees, the student must be enrolled in the Master of Environmental Management or Master of Forestry degree program for at least 36 units of credit and normally be in residence for three semesters.

To receive permission to pursue a specially designed concurrent degree, the student must show an official acceptance from another certified graduate degree program. For additional information concerning special concurrent degrees, applicants should consult the Office of Enrollment Services.
Academic Information for Professional Degree Students
Admissions

Requirements and Prerequisites

The Nicholas School of the Environment and Earth Sciences welcomes applications from men and women of all backgrounds who seek an intellectually challenging education designed to prepare them for leadership in a wide variety of natural resource and environmental careers. Admission to the Master of Environmental Management (M.E.M.) and the Master of Forestry (M.F.) is open to students who hold a bachelor’s degree from an accredited college or university or who have completed at least three years of study in an institution participating in the Cooperative College Program described later in this chapter. Admission as a special or nondegree student may also be granted under appropriate circumstances.

Prerequisites

All students admitted to the school are expected to have had the following:

1. Some previous training in the natural sciences or the social sciences related to their area of interest in natural resources and environment.
2. At least one college semester of calculus.
3. A statistics course that includes descriptive statistics, probability distributions, hypothesis testing, confidence intervals, correlation, and simple linear regression.
4. Experience using computer-based word processing, spreadsheets and databases. Web design software experience strongly encouraged.

Each program area requires additional courses or recommends additional preparation, as follows:

- Coastal Environmental Management: microeconomics (or general economics that focuses on microeconomics)
- Conservation Science and Policy: principles of ecology
- Ecosystem Science and Management: principles of ecology
- Energy and Environment: microeconomics (or general economics that focuses on microeconomics)
- Environmental Economics and Policy: microeconomics (or general economics that focuses on microeconomics)
- Environmental Health and Security: biology (including human or animal physiology), chemistry, organic chemistry
- Forest Resource Management: microeconomics (or general economics that focuses on microeconomics); principles of ecology
- Global Environmental Change: earth science and biology recommended
- Water and Air Resources: economics; undergraduate training in chemistry recommended

All courses taken to fulfill a prerequisite must be full-semester courses, be taken for a grade and a final grade of $B-$ or better must be earned in the course. Official transcripts must be submitted to the Office of Enrollment Services.
Although students lacking the level of preparation described above may be accepted for admission, deficiencies should be made up prior to enrollment in the Nicholas School. It is especially important for joint degree students and students planning to study at the Duke University Marine Laboratory in their second year to complete all prerequisites prior to enrollment. A limited number of deficiencies may be made up during the first year of residence; however, these courses will not count toward the 48 units of credit required for the M.E.M. or M.F. degree.

Interviews

An interview with a member of the admissions committee is not required but may be helpful to the applicant as well as to the school. Consequently, those applicants who can visit the Nicholas School are encouraged to do so. The visit presents an excellent opportunity for the applicant to ask questions and gain insights about the school. Applicants are encouraged to allow sufficient time to visit classes, meet students and faculty and tour the university.

In general, visits can be scheduled on weekdays throughout the academic year. Appointments should be made at least two weeks in advance. Although visits during the summer months are possible, they should be scheduled well in advance since no summer classes are taught and faculty are frequently away from campus. During the middle of the fall semester and the beginning of the spring semester, formal visitation programs are hosted by the Office of Enrollment Services of the Nicholas School of the Environment and Earth Sciences.

Each year representatives of the Nicholas School travel throughout the country to visit undergraduate schools. Applicants from the cooperative colleges should check with their program advisors for details of these visits. Applicants from other institutions interested in meeting with a representative of the school should write or call the Office of Enrollment Services.

In addition, it is sometimes possible to arrange an interview with an alumnus, particularly where distance precludes travel to Durham. For further information or to arrange a school visit, applicants may write to the Office of Enrollment Services, send an e-mail to admissions@nicholas.duke.edu, or call (919) 613-8070.

Admissions Criteria

Admissions criteria for the Nicholas School of the Environment and Earth Sciences are designed to ensure that admitted students will perform well while they are at Duke and after they graduate. Academic performance as an undergraduate, scores on the Graduate Record Examination and work experience are the primary factors considered in the application review process. Letters of recommendation, the applicant’s statement of educational goals, extracurricular activities and other information requested on the application also provide a basis for selection.

The Admissions Committee evaluates each candidate for his or her academic potential, professional promise and ability to benefit from and contribute to the goals of the school. Individuals with prior relevant work experience are especially encouraged to apply.

Application Procedures

Application for admission to the Master of Environmental Management and the Master of Forestry degrees is made through the Office of Enrollment Services of the Nicholas School of the Environment and Earth Sciences by submitting either a paper or electronic application. All correspondence should be addressed as follows: Office of Enrollment Services, Nicholas School of the Environment and Earth Sciences, Duke University, Box 90330, Durham, NC 27708-0330.
Normally, students are admitted at the beginning of the fall term. The application deadline is February 1 preceding the fall in which admission is desired. Because the school processes applications from more qualified students than it can admit, early submission of applications is recommended. Applications received after the February 1 deadline are held until all on-time applications have been considered. Admissions decisions on late applications are made on an individual basis according to the availability of student spaces and financial assistance.

When space is available, a few students are admitted for matriculation in January. Students seeking spring semester admission should submit their applications no later than October 15 prior to their matriculation.

No applicant will be considered until the completed application form, statement of objectives and all related documents described below are received by the Office of Enrollment Services. All paper-based materials should be submitted together.

1. Application Form. Electronic application is available at the Nicholas School Web site, http://www.nicholas.duke.edu/programs/professional/apply.html. The Admissions Committee attaches considerable weight to the statement of educational objectives submitted by the applicant. This statement should reflect well-defined motivation to pursue graduate study. The school is particularly interested in applicants who show leadership potential in the broad field of natural resources and the environment. Applicants are expected to demonstrate the maturity and sense of purpose essential to a demanding educational experience, including an understanding of the value of professional education to the applicant’s career plans and expectations.

2. Official Transcripts. Two copies of official transcripts from each undergraduate and graduate school attended should be sent to the Office of Enrollment Services in the application package in sealed envelopes that have been signed across the flap by the registrar of the institution attended. If the original transcript is not in English, the applicant must also provide a certified English translation.

3. Letters of Recommendation. Each applicant is required to submit three letters of recommendation, preferably on the form supplied with the application. These letters should be sent in the application package in sealed envelopes that have been signed across the flap by the writer. Recommendations provide the admissions committee with evaluations of the applicant’s past performance in academic and employment situations. Although recommendations from any source are acceptable, it is preferable that as many as possible come from college instructors.

4. Graduate Record Examination (GRE) scores. All applicants for degree programs must provide official scores on the general test (verbal, quantitative and analytical/writing assessment) of the Graduate Record Examination. Subject tests are not required. For scores to be considered, the GRE must have been taken within five years of the date of application. The GRE is administered by the Educational Testing Service at locations throughout the world. Applicants are urged to take the exam at the earliest convenient date. Scores on tests taken later than December may not reach the school until after the February 1 priority deadline. Scores should be reported to Duke University code number 5156. Registration forms may be obtained by writing to GRE, Educational Testing Service, Princeton, NJ 08540, or online at http://www.gre.org. Applicants are requested to send copies of their reports to the Nicholas School’s Office of Enrollment Services, but official reports from the Educational Testing Service are required before admission decisions can be made.

Admissions 51
5. Application Fee. A nonrefundable application fee of $65 prior to January 1 and $75 after January 1 is required of all applicants. A personal check, money order or cashier’s check made payable to Duke University is acceptable. Applicants who submit their applications electronically may pay the fee via credit card. Applications will not be processed until the required fee has been paid.

6. Undergraduate dean’s approval for students applying through the Cooperative College Program. (See below for additional information.)

Additional Procedures for International Students

Each year the Nicholas School of the Environment and Earth Sciences welcomes a number of international students among its professional degree candidates. Applicants from other countries must meet the same criteria as applicants from the United States, including a four-year bachelor’s degree or its equivalent. All academic transcripts and other documents in support of admission must be accompanied by an official translation if the original document is not in English. The nonrefundable application fee must accompany the application.

Test of English as a Foreign Language (TOEFL)

Applicants must have a fluent command of oral and written English. No allowance is made for language difficulty in arranging course schedules or in evaluating performance. If the native language is not English, the applicant must submit scores on the Test of English as a Foreign Language (TOEFL) to be considered for admission. All arrangements for taking the TOEFL must be made directly with the Educational Testing Service, Box 6151, Princeton, NJ 08540-6151; telephone 609-771-7100. In cases in which an applicant’s TOEFL score is low, the applicant may be accepted on the provision that he/she completes an intensive English language program in the United States prior to enrollment.

Proficiency exams in written and spoken English will be given to non-native speakers during orientation week. Students found to lack the proficiency in English needed to do well at Duke will be required to enroll in additional English language instruction. Students should be prepared to assume all costs for being tutored in English and may need to reduce their course or research program while being tutored. English language courses do not count toward credit hours required for the M.E.M./M.F. degrees.

Proof of Funding

The visa-granting authority in the student’s country of origin, ordinarily the United States Embassy, requires proof that sufficient funds are available to the student to cover the expenses of all academic years of study before a visa can be granted. Foreign students are not eligible for federal and state loans, although they may qualify for certain educational loans through private United States agencies. Current immigration laws make it difficult for the foreign student to find summer employment and permanent employment in the United States after graduation. Merit-based financial assistance, if it is offered, is not sufficient to cover all of the costs associated with studying at the Nicholas School. International students should expect to demonstrate other sources of support in order to obtain a visa.

Admission through the Cooperative Colleges (3-2) Program

The Cooperative College Program (3-2 program) allows students to receive an undergraduate and master’s degree by spending three years at a participating undergraduate institution and two years at the Nicholas School of the Environment and Earth Sciences. Students can pursue either of two degrees, the Master of Environmental Management (M.E.M.) or Master of Forestry (M.F.). More details can be found in Chapters 2 and 3 of this Bulletin.
A student interested in entering the Cooperative College Program should attend one of the participating undergraduate schools, a list of which is available from the Office of Enrollment Services. Students should apply for admission to the Nicholas School by February 1 of their third undergraduate year. Applicants from the participating schools are considered regular applicants for admission and are judged by the same criteria; therefore, students should submit application forms, transcripts, letters of recommendation and results of the Graduate Record Examination. In addition, students applying to this 3-2 program must also submit a letter from the undergraduate dean approving the application.

Admission to the Senior Professional Program

Applicants for either the Master of Environmental Management or Master of Forestry degree through the Senior Professional Program follow the same application procedures as regular students in the school. Applications should be submitted by February 1 for the fall term and by October 15 for the spring term. Normally, degree candidates in the Senior Professional Program take the required semester in residence during the term following admission.

Admission with Nondegree Status

Persons wishing to enter the Nicholas School of the Environment and Earth Sciences as nondegree students must submit a special application form requesting nondegree status along with an application fee of $25. The applicant must have completed a bachelor’s degree from an accredited college or university and must submit an official transcript of all previous course work. Taking the Graduate Record Examination is not required, although GRE scores are helpful in the admissions process. The student must have one letter of recommendation; this letter should indicate why the applicant should be allowed to undertake nondegree study at Duke. The application itself requires a brief statement of purpose in which the applicant should state his or her reasons for such study at Duke.

Admission as a non-degree student does not guarantee future admission to the M.E.M. or M.F. degree. Non-degree students who complete an application for the professional degree and are offered admission may transfer a limited number of appropriate credits from their non-degree status at Duke into the M.E.M. degree. The student’s program chair will determine which if any credits may be counted towards the degree. Applying credits taken as a non-degree student does not reduce the number of semesters required for the degree or the tuition required.

Offers of Admission

When admission is approved, the applicant will receive an offer of admission and an acceptance form. Offers of admission for the fall semester, including financial aid awards, are mailed to accepted students beginning in March, and offers of admission for the spring semester are mailed in early November. A nonrefundable tuition deposit is required with acceptance of the offer. The admission process is not complete until the acceptance form and the tuition deposit have been returned to the Office of Enrollment Services. Failure to respond by the stated deadline may result in cancellation of acceptance.

Deferred Admission

Applicants are admitted only to the class for which they have applied and should not apply until they are prepared to undertake professional studies. However, on occasion a deferral of admission may be granted so that the applicant can gain experience or strengthen academic qualifications for graduate study, or for other valid reasons. Financial preparedness is rarely an acceptable reason for a deferral. A deferral of admission cannot be granted for more than one year. Deferral is granted on an individual basis, and the size of each class frequently precludes open-ended guarantees of future admission.
Applicants with substantial reasons for deferring the start of graduate work must send a request to the Admissions and Awards Committee in care of the Office of Enrollment Services as soon as possible after receiving an offer of admission. Offers of financial assistance are cancelled upon deferral of admission, and students must be reconsidered for financial aid.

Financial Information

Tuition and Fees

Estimated Expenses for the Academic Year

The following approximate costs, applicable in 2006-2007, are indicative of costs that can be expected by M.E.M. and M.F. candidates; Ph.D. students should consult the Bulletin of the Graduate School for similar data.

<table>
<thead>
<tr>
<th>Expense</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition ($12,750 per semester)</td>
<td>$25,500</td>
</tr>
<tr>
<td>Student health fee ($262 per semester)</td>
<td>$524</td>
</tr>
<tr>
<td>Graduate student activity fee ($10 per semester)</td>
<td>$20</td>
</tr>
<tr>
<td>Recreation fee ($30 per semester)</td>
<td>$60</td>
</tr>
<tr>
<td>Transcript fee (first semester only)</td>
<td>$40</td>
</tr>
<tr>
<td>Housing</td>
<td>$5,800</td>
</tr>
<tr>
<td>Food</td>
<td>$4,100</td>
</tr>
<tr>
<td>Books and supplies</td>
<td>$1,080</td>
</tr>
<tr>
<td>Transportation</td>
<td>$1,750</td>
</tr>
<tr>
<td>Motor Vehicle Registration and Parking</td>
<td>$108-$588</td>
</tr>
<tr>
<td>Automobile</td>
<td></td>
</tr>
<tr>
<td>Motorcycle</td>
<td>$45</td>
</tr>
</tbody>
</table>

In addition to these fixed expenses, the student may incur other expenses, which will depend to a large extent upon individual tastes and habits. The average Duke student, however, can plan on a budget in the range of $39,000 to $45,000 for the academic year. Students with spouses and children naturally will have higher expenses.

Flat-fee Tuition

Professional degree students in the Nicholas School pay a flat rate of tuition per semester (excluding the summer session). Students in the two-year M.E.M. and M.F. programs will pay the flat-fee tuition for four semesters. Students in the M.E.M./M.P.P. or M.E.M./M.A.T. concurrent degree programs will pay the flat fee for three semesters in the Nicholas School. Students in the concurrent M.E.M./M.B.A. or M.E.M./J.D. programs will pay one flat rate tuition across all semesters of enrollment regardless of where the student is taking courses. In such cases, the schools involved will decide upon the distribution of prorated tuition. Students in the concurrent M.E.M./M.F. program pay the flat-fee tuition for a minimum of five semesters. Students in the one-year M.F. degree option will pay the flat fee for two semesters.

The flat-fee tuition allows Master of Environmental Management and Master of Forestry degree candidates to register for 9 or more units of credit for a fixed tuition payment per semester. The normal full-time enrollment is expected to be 12 units per semester, although units may vary from 9 to 15 depending upon the student’s academic and assistantship requirements. Permission is required to register for fewer than 9 or more than 15 units in a semester.

If the student is permitted to be enrolled part time (fewer than 9 units), he or she will be charged per unit of credit ($1,100 per unit for the 2006-2007 academic year). Students
who are approved for part-time enrollment status are not eligible for school or federal financial aid.

Students who wish to earn additional credits during the summer will be charged at the part-time rate per units of credit. Payment for summer session courses is in addition to the required four semesters at the flat tuition rate. Students who have completed the required semesters in residence and all course requirements except the Master’s Project will be charged a minimum registration fee ($350 for 2006–2007) each semester until the degree is completed.

All students are expected to be registered in residence, to be approved for a leave of absence or to pay a minimum registration fee for each semester until their degree is completed.

Payment of Accounts

Invoices for tuition, fees and other charges are sent by the Office of the Bursar and are payable by the invoice due date. As a part of the agreement of admission to Duke University, a student is required to pay all invoices as presented, unless other arrangements are made in advance. Students interested in arranging a payment plan should contact Tuition Management Services, 127 John Clark Road, Newport, RI 02842; telephone 800-722-4867.

Late Payment Charge

If the total amount due on the student invoice is not received by the invoice due date, a penalty charge will be accrued from the billing date and applied to the past due balance. The past due balance is defined as the previous balance less any payments and credits received during the current month. Student loan payments, already accepted and in process in the system, will not cause a late payment charge.

Restrictions

If the total amount due on the student invoice is not received by the due date, the student will be considered in default and will not be allowed to register for classes, receive a copy of the academic transcript, have academic credits certified, be granted a leave of absence or receive a diploma at graduation. In addition, an individual in default may be subject to dismissal from the university.

Tuition Refund Policy

In case of withdrawal from the university, Title IV federal financial aid received by students enrolled for the first time at Duke will be refunded on a pro rata basis. The pro rata formula is calculated by multiplying the total school charges by the remaining fraction of the enrollment period for which the student has been charged, rounded downward to the nearest 10 percent, less any unpaid charges owed by the student. The pro rata refund policy does not apply to any student whose withdrawal occurs after the 60 percent point in the period of enrollment. Sample refund calculations are available from the Enrollment Services Office.

If the student receives federal financial aid but is not attending the university for the first time or if the student does not receive federal financial aid, tuition will be refunded or carried forward as a credit for later study according to the following schedule:

<table>
<thead>
<tr>
<th>Withdrawal</th>
<th>Refund</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before classes begin</td>
<td>full amount</td>
</tr>
<tr>
<td>During first or second week</td>
<td>80 percent</td>
</tr>
<tr>
<td>During third, fourth or fifth week</td>
<td>60 percent</td>
</tr>
<tr>
<td>During sixth week</td>
<td>20 percent</td>
</tr>
<tr>
<td>After sixth week</td>
<td>none</td>
</tr>
</tbody>
</table>
Late Registration

Students who register at a date later than that prescribed by the university must pay a late registration fee at the Office of the Bursar.

Audit Fee

Students registered for a full course load may audit courses without charge. Otherwise, audit fees are $1,100 per course.

Transcripts

Transcripts are available on request from the Duke University Office of the Registrar. During their first semester in residence, students are charged a fee that covers all future requests for transcripts. The Nicholas School of the Environment and Earth Sciences cannot issue transcripts.

Housing Charges

On-campus housing for professional and graduate students is available on a limited basis. Questions regarding costs should be addressed to the Office of Housing Administration, Duke University, Box 90451, Durham, NC 27708-0451.

Parking

Students who wish to operate or park motor vehicles on campus must obtain a permit from the Parking and Transportation Services Office. Parking fees vary according to location and type of vehicle.

Student Health Fee

All students are assessed a fee for the Student Health Service. This fee is distinct from health insurance and does not provide major medical coverage.

Medical Insurance

All resident students are billed for health insurance in the fall semester unless proof of other insurance is provided. Family plans are available through the university’s insurance vendor for an additional fee. All international students will be registered automatically for the Duke health insurance policy unless they can provide proof of health insurance that is comparable in coverage to the Duke policy. International students are required to carry health insurance for a spouse or children living in Durham.

Tuition and Fees for the Summer

Very few summer course offerings are available on the Durham campus of the Nicholas School. M.E.M. and M.F. students who wish to take additional credits during the summer should expect to do so through other departments in the university or at the Duke University Marine Laboratory in Beaufort. Students should consult with their advisors to make sure the courses are appropriate for their program of study. Tuition and fees for summer study depend on the department. Professional degree students who wish to study at the Duke Marine Lab during the summer may enroll for credit in Marine Lab courses in either summer session or both at no additional tuition charges. Students may select this option for the summer preceding their matriculation in the degree or the summer between the two years. Students choosing to study at the Marine Lab during the summer are still required to pay four (4) full semesters of tuition and be in residence for at least three (3) semesters in the pursuit of their degree. Information on fees, housing, policies and procedures related to the Duke University summer session is available from the Duke University Web site located at http://www.learnmore.duke.edu/summersession.

Summer semester coursework cannot be considered a substitute for the required semesters in residence during the academic year, nor does it reduce the flat fee tuition for the academic year.
Recreation Fee

A mandatory fee will be charged to all registered students for usage of campus recreational facilities. Students’ spouses or domestic partners are eligible to use the facilities for an additional fee.

Athletic Events

Students are admitted free of charge to all regularly scheduled university athletic events held on campus during the academic year, with the exception of basketball. Students who wish to attend home basketball games must enter the student ticket lottery and pay for tickets if selected.

Financial Assistance

Financial assistance in the form of scholarships, fellowships or assistantships is available for qualified students. Funds to support these merit awards are limited. As a result, students must expect to have other financial resources. For many students, the federally subsidized loan programs provide a large portion of the funds necessary to cover the cost of attendance.

All professional degree students must file the Free Application for Federal Student Aid (FAFSA) to be considered for student loans and work-study. A separate application must be filed for each academic year. Applicants may obtain a FAFSA from a college or university counseling and placement center or financial aid office or from the Office of Enrollment Services. The form is also available online at http://www.fafsa.ed.gov. Professional degree applicants must also complete the financial aid section of the Application for Admission.

Scholarships and assistantships are granted from school funds, which are in limited supply. Consequently, only well-qualified students can expect to receive awards. Scholarships and assistantships are awarded on the basis of demonstrated outstanding academic ability and a high degree of professional promise.

Fellowships are obtained from foundation grants, private industry or individual donors. Donors of fellowship funds sometimes place restrictions on the use of the funds as well as on the amount of awards.

Research assistantships are obtained primarily from grant and contract funds awarded to various faculty in the school. University-funded assistantships are available for students who have sufficient experience to contribute to one or more ongoing research or academic programs.

Pursuant to the Tax Reform Act of 1986, students performing any services (whether degree-related or not) required by their scholarship, fellowship or assistantship must have income taxes withheld. However, if the student anticipates no tax liability at the end of the calendar year, he or she can note “exempt” on the state and federal withholding forms, and no taxes will be withheld. Income tax information is reported to the student by the university in January.

In all instances, admission to the Nicholas School is a prerequisite for the award of assistance in any form. If offered financial assistance, professional students normally will receive the award for two years of study; it is expected that they will complete their degree within this period of time. However, the School has the right to examine the progress of each student to determine eligibility for continuation of awards beyond the first year.

No student will receive financial aid while on probation unless an appeal is approved by the Admissions and Awards Committee.

In no case may the amount of financial aid awarded to a student from all sources in a given year exceed the estimated annual costs of attending the Nicholas School.
Eligibility for Financial Assistance

A significant portion of the financial assistance for students in the Nicholas School of the Environment and Earth Sciences is provided by federal, Title IV funds. To qualify for such funding, usually in the form of loans, students must meet federal eligibility requirements including the maintenance of satisfactory academic progress. Professional degree students must complete at least 18 units of course work with at least 6 units of G and/or E grades during the first full year of study and may not receive a grade of F in any course to be eligible for federal financial aid for their second year.

Although professional degree students have five years from the first date of matriculation in the school to complete their degree requirements, they are eligible for federal financial assistance for the equivalent of four full-time semesters only. Students who fail to meet the satisfactory academic progress requirements or need federal financial assistance for more than the equivalent of four semesters may appeal to the Admissions and Awards Committee.

Fellowships for M.E.M./M.F. Students

Merit-based awards depend on the generosity of donors. Students receiving merit-based awards may be supported from one of the following endowments.

Alumni Fellowship

Established by graduates of the Nicholas School, the Alumni Fellowship Endowment provides fellowships to minority students and to rising second-year students to support Master’s Project research.

Lawrence E. Blanchard Society of Scholars and Fellows

Established by Charles and Bernard Blanchard, this fund provides scholarships to undergraduates and fellowships to graduate students studying at the Duke University Marine Laboratory.

Norman L. Christensen Jr. Fellowship

Established by alumni and friends in honor of the founding dean of the Nicholas School, this fellowship provides full tuition to candidates pursuing the Master of Environmental Management degree.

William Cleveland Fellowship

Established by William Cleveland, this fellowship provides financial assistance to Nicholas School students.

Timothy J. and Anne G. Creem Scholarship

Established by Tim Creem, this fellowship is for candidates pursuing the Master of Forestry degree.

Cummings Family Fellowship

Established by Bruce and Myrna Cummings, this fellowship supports Nicholas School students.

Barbara L. Dannenberg Fellowship

Established by Richard Dannenberg, this fellowship is for Nicholas School students with a preference to the field of ecology.

Kathryn M. Deane and Walter L. Deane Fellowship

Established by Walter Deane and Kathryn Deane, this fellowship provides financial assistance to African American students during the summer session at the Marine Lab.

Field Fellowship Fund

Established by Marshall Field and Jamee Field, this fund provides fellowships for Nicholas School students.
Virlis L. Fischer Student Recognition Endowment
Established by Mrs. Bernice Fischer, this fund provides fellowships to second-year professional degree students at the Nicholas School and provides an award to the Master of Environmental Management graduate with the highest academic achievement.

Forestry and Environmental Studies Fellowship
Established by the Cordelia S. May Trust, this fellowship provides financial support to Nicholas School students.

Friends of the Earth
Established by F. Daniel Gabel, Jr. T’60, this fund provides fellowships to Nicholas School students with a preference given to students who are associated with Friends of the Earth International or students with an interest in creative environmental advocacy.

LeRoy George Scholarship
Established by the LeRoy George Children’s Nature Museum Inc., this fund provides fellowships to Nicholas School students, with preference given first to students from Haywood and Buncombe Counties and Hendersonville in North Carolina. Second preference will be given to students from the Southern Appalachian Region.

Gray Family Fellowship Fund
Established by Lyons Gray and Connie Gray, this fund provides fellowships for Nicholas School students.

Verne Lester Harper Fellowship
Established by Verne Lester Harper, this fellowship provides financial support to Nicholas School students.

Charlotte and Robert Hay Fellowship
Established by Charlotte and Robert Hay, this fellowship provides support to Nicholas School students.

Richard Heintzelman Family Fellowship
Established by Richard Heintzelman, this fellowship is for Nicholas School students, with first preference given to those studying forestry or environmental economics.

Tim and Karen Hixon Wildlife Conservation Fellowship
Established by George C. and Karen Hixon, this fellowship is for Nicholas School students with interests in careers related to wildlife management and conservation.

Richard E. Hug Fellowship
Established by Richard Hug, this fellowship provides financial support to Nicholas School students.

International Paper Corporation Fellowship
Established by the International Paper Corporation, this fellowship is for Nicholas School students.

Thomas W. Keesee Jr. Fellowship
Established by Thomas Keesee Jr., this fellowship is for Nicholas School students.

Carolyn Odom Little School of the Environment Scholarship Fund
Established by Terry H. Little, provides scholarships for Nicholas School students.

Melanie Lynn Memorial Scholarship
Established by Peter Lynn and David Lynn, this fellowship is for graduate students studying at the Marine Lab, with first preference to female students.
Andrew W. Mellon Fellowship
Established by the Andrew W. Mellon Foundation, this fellowship provides financial support for research experience at the Nicholas School.

Muchnic Foundation Fellowship
Established by the Foundation, this fellowship provides financial support to Nicholas School students.

Nicholas School Professional Student Fellowship
Established by Sally S. Kleberg, this fellowship provides financial support to Nicholas School students.

Orvis Fellowship
Established by the Perkins Charitable Foundation, the Orvis-Perkins Foundation, and the Leigh H. Perkins Charitable Lead Trust, this fellowship is offered to Nicholas School students.

Orrin Pilkey Fellowship
Established by friends of Orrin Pilkey, this fellowship is for Nicholas School students applying research to human uses of the coastal zone.

Nancy A. and Simon B. Rich Fellowship
Established by Simon and Nancy Rich, this fellowship provides financial support to Nicholas School students.

Robert W. Safrit Jr. Fellowship
Established by Robert W. Safrit, this fellowship is for graduate students at the Marine Lab.

Gary H. Salenger Fellowship
Established by Gary Salenger, this fellowship is for Nicholas School students.

Truman T. and Nellie Semans Scholarship Fund
Established by Truman and Nellie Semans, this fund provides fellowships for Nicholas School students.

Bartow Shaw Family Fellowship
Established by Bartow Shaw, this fellowship is for Nicholas School students, with preference given to students pursuing a Master of Forestry degree.

Syngenta Crop Protection Inc. Fellowship
Established by the company, this fellowship is for Nicholas School students, with preference given to students studying environmental toxicology or environmental risk assessment.

Yasuomi Tanaka Memorial Fellowship
Established by Frances Tanaka, this fellowship is given to Nicholas School students, with preference given to international students.

Thorenson Foundation Fellowship Fund
Established by Paul O’Connell, this fund provides fellowships to for Nicholas School students.

Wade Family Fund
Established by Charles B. Wade, Jr. T’38, this fund provides scholarships for Nicholas School students studying at the Marine Lab.
John and Sue Wall Fellowship
Established by John and Sue Wall, this fellowship is offered to Nicholas School students pursuing the Master of Forestry degree.

Frederick K. Weyerhaeuser Forest History Fellowship
Offered by the Forest History Society, this fellowship is given annually to a Duke University graduate student who wishes to study broadly in the area of forest and conservation history. The fellowship consists of a cash prize and office space at the FHS.

Zirkle Fellowships
Established by Sara and Lewis Zirkle, this fellowship is offered to Nicholas School students.

Assistantships
Assistantships may be awarded to a select number of professional degree students during their first year of study to assist faculty and staff with teaching, research, professional and other projects. It is expected that students will work for eight hours a week on their assigned project. Assistantships require a regular work schedule to be arranged between the student and the faculty or staff member to whom he or she is assigned. During the second year of study, professional students may fulfill the assistantship requirement by working independently on their Master’s Project.

Students who receive assistantships are paid by the Nicholas School on the monthly payroll. For the 2006–2007 academic year, the award for ten hours per week of assistance was $2,800. Normally, assistantships are available only for the academic year and require full-time enrollment in the school. A few awards may be available during the summer, however, for faculty research, staff and Duke Forest assistance. Summer assistantships are paid on a biweekly or monthly basis.

Work-Study
Work-study funds for professional degree students are administered through the Office of Enrollment Services. At the beginning of the academic year, students are made aware of work-study opportunities and informed of the application procedures. Interested students must file the Free Application for Federal Student Aid (FAFSA) in order to determine eligibility.

Application for Awards for the Entering Student
Application for financial aid is made concurrently with the application for admission. Applicants should initiate the necessary action early to ensure that the required documents are filed with the school’s Office of Enrollment Services on or before February 1 prior to fall term enrollment. Completed applications received after the February 1 deadline will be considered if vacancies occur at a later date.

Notification and Acceptance of Awards
Recipients of awards usually are notified at the time of admission. Scholarships, fellowships and the various categories of assistantships provide the basis for professional/graduate student support. Once offered by the university or the school, funds are committed to one student and are therefore unavailable to others. As a consequence, it is the policy of the Nicholas School that all awards offered may be declined prior to May 1 without prejudice. However, offers accepted and left in effect after May 1 are binding for both the student and the school.

Loans
Federally insured student loans are often necessary and useful in helping a needy student to afford the graduate program of his or her choice. Students considering federal
loans should consider the nature of the loan and the positive and negative aspects of future loan payments and should also investigate all other forms of financial assistance.

Federal law requires all students to have completed a Free Application for Federal Student Aid (FAFSA) to determine financial need. The FAFSA form may be obtained online at http://www.fafsa.ed.gov or by contacting a college or university financial aid office or the Office of Enrollment Services. No loan application will be processed without the FAFSA form having been submitted to the central processor. In addition, in some cases federal law requires verification of income and other information.

Federal Stafford Loans

Federal Stafford loans of up to $18,500 ($8,500 subsidized and $10,000 unsubsidized) are available for eligible graduate/professional students. For loans made to new borrowers, interest is calculated at a fixed annual rate of 6.8 percent. If a student is eligible for a subsidized federal Stafford loan, interest is paid by the federal government while the student is enrolled in school. Interest on unsubsidized loans must be paid by the student during enrollment or capitalized to the principal at the borrower’s request.

Students may be eligible for a combination of subsidized and unsubsidized loans. Eligibility for the subsidized loan is determined by subtracting all financial aid awards and the student’s expected contribution from the Nicholas School’s student budget. The student’s contribution is computed from the income and asset information submitted on the FAFSA. Eligibility for the unsubsidized loan takes into consideration the other financial aid being received by the student, but the expected student contribution is not considered. Students may borrow from the unsubsidized loan program the difference between the student budget and their other aid (including any subsidized Stafford loan), up to a maximum of $18,500 for an academic year.

Students who borrow through the federal Stafford program will be given entrance and exit interviews concerning the projected and actual costs of their loans. They will also be provided with information on loan consolidation, should this repayment option be desired or needed.

Graduate Plus Loan Information

The recently passed Deficit Reduction Act of 2005 will allow Graduate and Professional students to borrow under the Federal PLUS loan program beginning with the 2006-07 aid year. The PLUS (Parent Loan for Undergraduate Students) was previously available only to the parents of dependent undergraduate students. Beginning July 1, 2006, that availability was expanded to graduate/professional students.

Students must be graduate/professional students enrolled at least half-time in a matriculated program; they must complete a 2006-07 FAFSA; they must first apply for the maximum loan eligibility in Subsidized and Unsubsidized Stafford loan before the PLUS can be awarded; parents of Graduate students will not be eligible to borrow the loan.

PLUS Loan borrowers are required to pass a basic credit check. The borrower may borrow the difference between the total cost of the student's education (including books, fees, and personal expenses) minus any financial aid the student will receive.

Repayment begins within 60 days after the final disbursement of each loan. The maximum repayment period is 10 years, and the minimum monthly payment is $50.00. Students may be eligible to defer payments as long as they maintain at least half-time enrollment. A loan fee of 3 percent will be charged and will be deducted proportionately from each loan disbursement. In addition, some loan guarantee agencies charge a 1 percent guarantee fee, which will also be deducted from disbursements. The interest rate will be fixed at 8.5 percent.
Federal Perkins Loans

Loans through the federal Perkins program are administered through the university for students who qualify under federal guidelines. The student must qualify as needy by the terms of the FAFSA form and must be in need of assistance beyond the maximum federal Stafford allocation. The interest rate is 5 percent, with payment on interest and principal deferred until nine months following graduation. The maximum Perkins loan is currently $6,000 for an academic year.

Duke Signature Select Loans

For students who need more funds than are available through the federal Stafford loan and the federal Perkins loan programs, the University offers the Duke Signature Select loan program. Through this program, students can borrow up to the cost of education (minus other aid received). The interest rate on this loan varies based on credit history, from Prime Rate plus .5 percent to Prime Rate plus 2 percent. Repayment begins six months after graduation or after the student drops to less than half-time enrollment. Applications can be obtained by contacting the Office of Enrollment Services in the Nicholas School at (919) 613-8070. Since this is a private loan, the lender will make a credit check.

Federal Grant Programs

Students with only three years of study at one of the institutions in the Cooperative College Program may be eligible for undergraduate state and federal grant programs. Such students should consult their undergraduate financial aid officers, state loan agencies or federal granting agencies for applications and information about requirements and restrictions.

Academic Regulations

Course Planning

Each of the professional programs has required courses or required areas of study, and responsibility for meeting these requirements before graduation rests with the student, with the assistance of the coursework advisor. During orientation, each student is assigned a faculty advisor. Early in the first semester, the student and advisor should fill out a course planning form outlining four semesters of coursework that will meet program course and credit requirements. This form can be amended at any time before the last semester of a student’s program, provided the plan still meets all requirements for graduation.

It is usually possible to change coursework advisors, with the approval of both the current and prospective advisors, and it is common to have as a Master’s Project advisor someone other than the coursework advisor. It is also usually possible to change programs, provided that the student has met prerequisites for the new program and provided that it is still possible for the student to meet all requirements of the new program before graduation. A student changing programs will usually be assigned a new coursework advisor, and the student must complete a new course planning form showing how program requirements will be met.

Registration

Entering students who enroll in the Master of Environmental Management or Master of Forestry degree program will receive instructions from the Nicholas School of the Environment and Earth Sciences about registering for courses. Registration for new students should be completed during the orientation period. Students in residence register for succeeding semesters at times scheduled in the university calendar.

Registration is approved by the advisor and completed by the student using an online registration system. Registration is required in order to take courses for credit or audit. To
establish eligibility for university and other loans, for the student health service, and for study and laboratory space, a student must be registered. All tuition and fee payments and any indebtedness must be settled before registration can be completed.

Credit Hours

Candidates for the professional degrees are considered fully registered when they enroll full-time for the number of semesters required in their individual degree programs (for example, four semesters for the M.E.M. or M.F. degree). Students normally register for 12 units per semester, although a variation from 9 to 15 units is common. Students must have the permission of their advisor to register for more than 15 units in a semester, and all students who wish to enroll for fewer than 9 units must make a formal request to the Education Committee to study part-time.

Late Registration

All students should register at the times specified by the university. The charge for late registration is $25.

Drop/Add

The period for dropping and adding courses ends on the tenth calendar day of the fall and spring semesters. During the summer, dropping or adding of courses is limited to the first three days of the term. Students are advised to make all class changes on the first day of class if at all possible.

Reciprocal Agreements with Neighboring Universities

Students enrolled full-time in the Nicholas School or in the Graduate School during the regular academic year may enroll for six hours of credit per semester at the University of North Carolina at Chapel Hill, North Carolina State University, or North Carolina Central University provided that they are also registered for at least six hours of credit at Duke during the same semester. Similarly, graduate students at these universities may take up to six hours per semester at Duke. In the summer, students may take courses interinstitutionally provided that they are enrolled at Duke for at least the same number of hours they wish to take at the other school(s); graduate students are limited to two summer courses at other institutions. This agreement does not apply to contract programs such as the American Dance Festival. The student must pay any special fees required of students at the host institution and provide his or her own transportation. A bus service sponsored by the Robertson Scholars Program travels between Duke and UNC every thirty minutes and is free to all students and staff of both universities.

Immunization Requirement

North Carolina law requires students entering a college or university in the state to be immunized against measles, rubella, tetanus, diphtheria and, in some cases, polio. Each entering student is required to present proof of these immunizations in accordance with the instructions contained in the Student Health Services form provided with the student's matriculation material. This form should be completed and returned to Student Health Services prior to the student's first day of classes. Duke University cannot permit a student to attend classes unless the required immunizations have been obtained.

Courses

Course Descriptions

Courses offered by the school are described in the final section of this Bulletin. However, courses are subject to change. Prior to registration for a given term, the Office of Enrollment Services prepares a list of courses to be offered as well as schedules of courses offered in other departments at Duke and at neighboring universities. These lists are made available online and in hard copy.
Independent Study

All professional degree students have the opportunity to pursue independent study with individual faculty members. Students register to take independent study credit under ENVIRON 299. Several students can work together under the supervision of a faculty member by registering for ENVIRON 200.

Master’s Project

All students must complete a Master’s Project of four to six credits. The project should be identified during the second term of study, initiated during the summer between academic years and completed during the third and fourth terms. No student will be permitted to register for the fourth term of study until a project proposal has been approved by the student’s advisor and received by the school’s Office of Enrollment Services. During the final two terms, major emphasis should be placed on the project. In completing the project, the student applies theoretical and analytical training acquired during the two years of study to actual natural resource or environmental problems. Students often use summer internships as the basis for Master’s Projects and may consult closely with a supervisor outside the school, as well as with their faculty Master’s Project advisor, to complete their work. Students should maintain close contact with their advisors during the development and writing of the Master’s Project. Projects should reach final stages of completion by midterm of the final semester in residence. A complete draft of the project must be delivered to the advisor prior to October 1 for those graduating in December, prior to March 1 for those graduating in May, and prior to July 1 for those graduating in September. The advisor is responsible for critical assessment and grading.

Auditing

Students registered for a full course load may audit courses free of charge. Otherwise, the audit fee is $1,100 per course. In classes in which enrollment is limited, students enrolled for credit will receive priority. Audited courses are recorded without grade on the student’s permanent record. Regular attendance is expected. Changes from audit to credit are not permitted after the drop/add period. Audited courses may not be used to fulfill program requirements. Audited courses may not be counted toward the number of credits required for graduation. Students must obtain written permission of the instructor to audit a course.

Intensive Courses

Short-term intensive courses are offered through the Nicholas School’s Duke Environmental Leadership Program. For the special intensive courses, students may register during the semester two weeks prior to the first day of the course as space permits and with the permission of the instructor. Students may not register for more than two intensives in a semester without permission of their advisor and the intensive course coordinator. Students who wish to drop an intensive must do so prior to the first day of the course.

Retaking Courses

Courses required as a part of the program elected by the student or required by the advisor must be retaken if failed. Courses prerequisite to more advanced courses the student wishes to take must be retaken if failed. Elective courses may be retaken if the student wishes to do so. See the section on grades, below, for additional information.

Grades

Grading System

The grading system used in the Nicholas School and the Graduate School is as follows: A (exceptional); B (good); C (satisfactory); F (failing); I (incomplete); Z (continuing). Plus (+) and minus (-) notations are permitted.
The grades of \(P \) (pass) and \(F \) (fail) are used in the Nicholas School for seminars, Master’s Projects, program area seminars and modular courses. At the instructor’s option, the grades of \(P \) or \(F \) or regular letter grades are used for intensive courses and independent projects. If a student wishes to take a regularly letter-graded course on a pass/fail basis, permission for the pass/fail option must be obtained in writing from the instructor prior to registration for the course. Regularly graded courses taken on a pass/fail basis may not count towards graduation or fulfill programmatic requirements.

The grade of \(Z \) is assigned for an independent project or a Master’s Project that extends over a period of more than one semester; a final grade is given upon completion of the project.

Incomplete Grades

A grade of \(I \) indicates that some portion of the student’s work is lacking, for an acceptable reason, at the time grades are reported. Requirements of all courses in which an instructor assigns a grade of Incomplete must be fulfilled within one calendar year following the date of the assignment of the incomplete grade.

In exceptional circumstances, upon recommendation of the professor who assigned the grade of Incomplete, the dean of the Nicholas School may extend the time for completion of the course requirements. If, in the judgment of the professor and the student’s advisor, completion of the requirements is not a reasonable alternative for the student, the student may petition the Education Committee to allow the grade of \(I \) to stand permanently on his or her record. No student will be allowed to graduate with an Incomplete unless permission has been granted for it to stand permanently on the record.

Failure

Failing a course may leave a student short of credits for graduation or lacking program curriculum requirements. If the failed course is not necessary to complete program curriculum requirements, the student may substitute another course to make up the lost credit, with the advisor’s approval. If the failed course is necessary to complete program curriculum requirements, the student must retake either that course or an acceptable substitute, with the advisor’s approval. Both the original failing grade and the grade received for the retaken or substitute course will appear on the student’s transcript.

Failure of a course also subjects the student to dismissal.

Probation and Dismissal

Any of three situations will result in probationary status for the following semester:

1. failing one or more courses,
2. two or more \(C (C-, C, C+) \) grades in a semester,
3. failing to maintain a cumulative average of at least \(B- \).

A student on probation must meet jointly with his/her advisor and one additional faculty member selected by the Director of Professional Studies before the end of drop/add (preferably before the beginning of the semester) to discuss what is going wrong and how to remedy it. These faculty committees have the discretion to suggest that a student take a leave of absence for a semester if they judge that to be the best way for the student to improve academic performance. A student on probation must meet again with the advisor and second faculty member a month after the first meeting to review academic progress.

Any student who does not meet academic standards at the end of the probationary semester will be subject to dismissal from the Nicholas School. The Education Committee will make decisions on dismissal.

In addition, students must have at least 48 units of credit with a grade point average of \(B- \) or better to graduate. Students who fail to meet that standard during their final semester...
must take additional Duke credits to meet the standard before they can graduate. Any exceptions are at the discretion of the Education Committee.

Honor Code

The Nicholas School advocates the highest standard of professional ethics and academic integrity. Students and faculty have developed an honor code for the school that is distributed to all students prior to matriculation and then discussed and signed during orientation. The Nicholas School uses the Community Standard, below, as its basis:

The Duke Community Standard

Duke University is a community of scholars and learners, committed to the principles of honesty, trustworthiness, fairness and respect for others. Students share with faculty and staff the responsibility for promoting a climate of integrity. As citizens of this community, students are expected to adhere to these fundamental values at all times, in both their academic and non-academic endeavors.

The Pledge

Students affirm their commitment to uphold the values of the Duke University community by signing a pledge that states:

1. I will not lie, cheat or steal in my academic endeavors, nor will I accept the actions of those who do.
2. I will conduct myself responsibly and honorably in all my activities as a Duke student.

A more complete explanation of the application of this standard in the Nicholas School may be found at http://www.nicholas.duke.edu/people/students/advising/honorcode.html.

Harassment Policy

Harassment of any kind is not acceptable in the Nicholas School of the Environment and Earth Sciences or at Duke University. It is inconsistent with the University’s commitments to excellence and to respect for all individuals.

Harassment is described by Duke University as the creation of a hostile or intimidating environment, in which verbal or physical conduct, because of its severity and/or persistence, is likely to interfere significantly with an individual’s work or education or affect adversely an individual’s living conditions on campus. Sexual coercion is a form of harassment with specific distinguishing characteristics. It consists of unwelcome sexual advances, requests for sexual favors or other verbal or physical conduct of a sexual nature when submission to such conduct is made either implicitly or explicitly a term or condition of employment or when submission to or rejection of such conduct by an individual is used as the basis for employment or educational decisions affecting the individual.

Members of the Nicholas School of the Environment and Earth Sciences community who have questions about the policy or how to deal with a suspected violation can obtain a copy of the policy and options for resolution from the Office of the Vice-President for Institutional Equity.

Academic Irregularities

All cases falling outside the regular policies and procedures of the school are referred to the Education Committee for decision. The committee reviews and makes decisions regarding course requirements for graduation, student probation and dismissal, student petitions for waivers of degree requirements and all actions that deviate from established academic regulations.

A student who desires to petition the committee should do so by writing to its chair. A precise statement of the reason for the request is required. The student will be notified in writing of the decision of the committee by the chair.
Transcripts of Credit
A student who is registered for a course and who successfully completes the requirements as prescribed by the instructor receives credit on university records. A transcript fee, charged to all students during their first semester in residence, covers all future transcript requests. Only the Office of the University Registrar issues transcripts of credit. Requests for transcripts, sent directly to the registrar, should state clearly the full name under which the work was taken, the dates of attendance and to whom the transcripts are to be sent. The student must sign the request for release of a transcript. No transcripts will be issued for students who fail to clear all financial obligations to the university upon graduation.

Length of Study
For a full-time student, the normal time for completing a professional master’s degree is four semesters. Exceptions may be made for students who have an undergraduate degree in forestry and for students enrolled in the Senior Professional Program. No student, is allowed more than five years to complete the requirements for the master’s degree.

Leave of Absence or Withdrawal
Occasionally, special circumstances require a student to leave the university for one or two semesters at a time. If the reason for the departure is considered an emergency, the student may request a leave of absence for a period not to exceed one year. If the reason is to study elsewhere in a combined degree program, a leave will be granted for the length of study. If the student plans to do field studies or an internship, he or she must maintain university enrollment by paying a registration fee each semester of the academic year until full-time study is resumed.

Under all circumstances, the student must request the leave for a specific length of time prior to departure from the university. Extensions must be requested if they are required. Failure to request a leave or an extension of leave may result in a penalty charge and/or dismissal from the university. A student is eligible to request a leave of absence only after having completed at least one semester of study.

A student who wishes to withdraw from the university must make a written request to do so. For refunds upon withdrawal, see the section on financial information above.

Graduation
Even if degree plans are tentative, a candidate for a degree must file a declaration of intention to receive the degree at the designated time for each semester. The intention to receive the degree is valid only for the semester in which it is filed. If the student does not receive the degree as expected, he or she must file a new declaration at a later time.

All candidates are urged to attend the commencement exercises at which their degrees are to be awarded. A student who is unable to attend is required to seek permission from the dean no later than four weeks prior to commencement to receive the degree in absentia.

Debts
Students are expected to meet all financial obligations to the university prior to completion of the degree. Failure to pay all university charges by the due dates specified by the university will bar the student from registration, class attendance, receipt of transcripts, certification of credits, leave of absence or graduation until the account is settled in full. Further, an individual in default may be subject to dismissal from the university.

Career Services
The Nicholas School of the Environment and Earth Sciences recognizes the importance of blending rigorous academic study with professional development and career opportunities. The Nicholas School has its own Career Services Office to provide a wide
A variety of services, programs, and resources are available to enhance a student’s professional preparation and career opportunities.

The Career Services Web site (http://www.nicholas.duke.edu/career) provides up-to-date information about environmental internship and employment opportunities, relevant fellowships and scholarships, and research grants, as well as career advice integral to a successful job and internship search. The Career Services staff assists students with exploring career options, developing individualized strategies for finding internships and permanent employment, and making contacts with alumni and employers. Career Services provides Nicholas School students with many services, including individual counseling and job search assistance, internship panels with experienced students, workshops and critiques for interviews, resume and cover letter writing, and employment and salary statistics for negotiating offers.

Career Services publishes an annual Resume Book that highlights and promotes the professional qualifications and experiences of our graduating class. The Resume Book is mailed to more than 900 potential employers and is made available to employers online at http://www.nicholas.duke.edu/career/resumes.

The Alumni Career Network is an excellent online resource for networking with practicing professionals that can be searched by geographic region, employment sector, specific employer, or type of environmental expertise. Alumni listed in the Career Network are available to give advice on internship and job searching and to offer insights on the knowledge, skills, and abilities needed by today’s environmental professionals.

Career Services schedules job fairs, employer information sessions, and on-campus recruiting events throughout the academic year to allow students to meet employers and broaden their knowledge of the environmental profession and career opportunities.

Nicholas School alumni in career transition may use Career Services at any time for resume review and critique, salary data for effective negotiations, job search strategies, and information regarding employment opportunities.

Internship Opportunities

Practical experience is integral to the Nicholas School’s educational process and even more important to employers seeking qualified candidates. The Career Services staff helps students identify internships to meet professional development goals or research interests. Internships are opportunities for students to explore specific career fields, enhance career experiences, learn or apply new skills, establish networks of practicing professionals, and gain perspective on environmental issues in various regions or countries. Ninety-eight percent of all Nicholas School students have completed internships or summer research projects during their M.E.M./M.F. program.

Each year Nicholas School students participate in summer internships throughout the United States and around the world. Students work with nonprofit conservation organizations, government agencies, consulting firms, business and industry, and international organizations to supplement career training or research interests. Most students pursue internships during the summer between academic years of study, although internships may be secured at other times and for longer durations. In addition, internships may serve as the foundation for a Master’s Project or open doors to new career interests and employment options.

Internship statistics are updated annually on the Career Services Web site, at http://www.nicholas.duke.edu/career.

Internship Funds

The Career Services staff is committed to assisting students to find paid internships or secure small grants for unpaid summer projects. Most recently, Nicholas School students
were successful in securing more than $380,000 from grant resources available from the Nicholas School and Duke University as well as external funding sources to support professional student internships or research projects. The list below highlights internship grant opportunities specifically for Nicholas School students. Grant awards are made annually, with award amounts determined by the amount of endowment income generated each year.

David R. Brower Internship Fund
Established by Dan and Bunny Gabel, the David R. Brower Fund provides summer support for Nicholas School students interested in working as interns in grassroots environmental organizations that exemplify David R. Brower’s uncompromising commitment to preserving natural ecosystems, opposing technological fixes and upholding the spirit of conservation represented by the strong environmental laws of the 1970s.

The Whitney Chamberlin Internship Endowment Fund
Established by the family and classmates of Whitney Lawson Chamberlin, a first-year student at the Nicholas School in 1996, this fund supports international internship-related travel for Nicholas School students interested in pursuing meaningful internship experiences that address or explore community-based business and environment interactions.

Doris Duke Conservation Fellowships
The Nicholas School of the Environment and Earth Sciences is one of a select group of schools to partner with the Doris Duke Charitable Foundation to identify students with professional promise for future leadership in U.S.-based conservation. Up to seven Fellows are competitively selected during the first semester of study and are awarded a summer internship stipend and tuition support for second year of study.

Environmental Internship Fund (EIF)
EIF is a student-run fundraising organization within the Nicholas School that awards supplemental grants to Nicholas School students with internships that are under-funded. EIF student volunteers gain fundraising experience by coordinating and hosting fundraising events and managing the annual grant application, review and award process. The number of EIF grant awards is determined by the amount of money raised each year by the Nicholas volunteers.

Kuzmier-Lee-Nikitine Endowment Fund (KLN Fund)
Established by family and friends to perpetuate the philosophy and ideals demonstrated by the work of three members of the class of 1992: Kerrie Hamilton Kuzmier, Stephen Farrow Lee, and Pavlik André Nikitine. The KLN Fund provides internship seed grants for Nicholas School students pursuing an international internship project. Preference is given to international projects that include development of human capital; promotion of sustainable/efficient use of natural resources; maintenance of local cultural integrity; preservation of biodiversity; or improvement of the local quality of life.

Stanback Conservation Internship Program
The Stanback Internship Program is made possible by the generous support of Mr. and Mrs. Fred Stanback. The program is a partnership between the Nicholas School and targeted conservation organizations. Its purpose is to provide students with a significant paid summer work experience in grassroots conservation, advocacy, applied resource management or environmental policy. Each year more than 150 internship projects with 39 conservation organizations are offered to Nicholas School and Duke University students. This includes any continuing or entering Duke professional, doctoral or undergraduate student. Students
who have one full semester remaining as a Duke student following the internship are eligible to compete for these internships. Graduating students are not eligible.

Student International Discussion Group (SIDG) Internship Fund

SIDG is a nonprofit student discussion group for international and national environmental issues. SIDG manages an annual grant program that provides seed grants to Nicholas School students with international internship projects.

Employment Trends and Statistics

The variety and geographic distribution of organizations that employ Nicholas School graduates demonstrate the value and relevance of the Master of Environmental Management and the Master of Forestry programs. Our graduates’ career success confirms the marketability of a professional/graduate degree from Duke.

Employment statistics are collected, annually, six months following our annual graduation in May. The Nicholas School averages an 84 percent graduate response rate and of the respondents 85 percent are employed in positions directly or closely related to their program of study. The data below illustrates the diversity of career paths and employment locations of recent Nicholas School graduates:

Geographic Distribution for 2002-2005 Graduates

<table>
<thead>
<tr>
<th>Region</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-Atlantic US/Washington DC</td>
<td>24%</td>
</tr>
<tr>
<td>Midwest US</td>
<td>4%</td>
</tr>
<tr>
<td>Western US</td>
<td>14%</td>
</tr>
<tr>
<td>Southeast US</td>
<td>33%</td>
</tr>
<tr>
<td>Northeast US</td>
<td>17%</td>
</tr>
<tr>
<td>International</td>
<td>8%</td>
</tr>
</tbody>
</table>

Employer Distribution for 2002–2005 Graduates

<table>
<thead>
<tr>
<th>Category</th>
<th>2005</th>
<th>2004</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Government Agencies</td>
<td>28%</td>
<td>30%</td>
<td>42%</td>
</tr>
<tr>
<td>Consulting Firms</td>
<td>37%</td>
<td>32%</td>
<td>20%</td>
</tr>
<tr>
<td>Nonprofit Organizations</td>
<td>20%</td>
<td>32%</td>
<td>27%</td>
</tr>
<tr>
<td>University Research</td>
<td>7%</td>
<td>2%</td>
<td>4%</td>
</tr>
<tr>
<td>Business and Industry</td>
<td>8%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Pursued Additional Education</td>
<td>3%</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>7%</td>
</tr>
</tbody>
</table>

The following is a list of selected employers of recent Nicholas School graduates:

Consulting Firms

- ABT Associates
- Blasland, Bouck & Lee - Sciences
- Booz, Allen and Hamilton
- The BSC Group, Inc.
- Cadmus Group
- Camp Dresser McKee
- The Clark Group, Inc.
- Eastern Research Group Inc.
- Ecology and Environment Inc.
- ENVIIRON
- Environmental Sciences, Inc.
- Horne Engineering Services
- ICF Kaiser International
- LMI
- MACTECH Engineering and Consulting Inc.
- Northern Ecological Associates
- PARSONS
- PRIZIM
- Ross and Associates Environmental Consulting
SAIC
TechniData America LLC
TetraTech Inc.
URS Corporation
Versar Inc.

Not-for-Profit/NGO/PVO
Cape Cod Hook Fisherman’s Association
Chemonics
Conservation International
Consortium for Energy Efficiency
Council on Economic Priorities
Environmental Defense
Environmental Law Institute
Field Museum of Natural History
Forest Stewardship Council
Forests of the World
The Gordon and Betty Moore Foundation
International Council for Local Environmental Initiatives
IUCN - The World Conservation Union
Mesa Land Trust
National Parks & Conservation Association
Natural Marketing Institute
North Carolina Sustainable Energy Association
Northeast Midwest Institute
NRDC
The Nature Conservancy
Ocean Associates
Peninsula Open Space Trust
Resources for the Future
Rocky Mountain Institute
Royal Society for the Conservation of Nature
St. Simons Land Trust
Sustainable Forestry Board
The Trust for Public Land
USAID
US Climate Action Network
US Marine Mammal Commission
Winrock International
Women’s Environment & Development Center
World Bank
World Resources Institute
World Wildlife Fund

Federal Government
Alaska Fisheries Science Center
Bureau of Indian Affairs
Bureau of Land Management
Federal Energy Regulatory Commission
Federal Highway Administration
Mineral Management Services/DOI
Marine Conservation Biology Institute
Monterey Bay Aquarium Research Institute
National Estuarine Research Reserves
National Marine Fisheries Service
National Park Service
NOAA
The Ocean Conservancy
Office of Budget and Management
UN Environment Programme
UN Institute for Training and Research (UNITAR)
US Department of Energy
US EPA
US Fish and Wildlife Service
US Forest Service
US General Accounting Office
US G

Industry
American Electric Power
Anadarko Petroleum Corporation
BP
Eli Lilly & Company
Fetzer Vineyards
Ford Motor Company
GE Power Systems
Geo-Marine, Inc
Georgia Power
Lowes
IBM
International Paper Company
Mitsubishi Heavy Industries
Natural Marketing Institute
Pfizer, Inc.
Public Health Foundation Enterprises
Toyota Motor Sales USA Inc.

State/Local Government
Atlantic States Marine Fisheries Commission
Arizona Game & Fish Department
City of San Pablo, CA
Florida Fish and Wildlife Conservation Commission
Georgia Environmental Facilities Authority
Idaho Department of Water Resources
King County (WA) Conservation District
Massachusetts Department of Conservation and Recreation
Massachusetts Water Resources Authority
New England Fisheries Management Council
New England Interstate Water Pollution Control Commission
Annual employment statistics and salary offers for recent Nicholas School graduates are updated on the Career Services web site at http://www.nicholas.duke.edu/career.
Doctoral Programs
Doctoral Programs

The Ph.D. degree prepares students for careers in university teaching and research. This graduate degree is appropriate for students desiring to concentrate their study and research within a well-defined subject area, pursuing fewer and more advanced topics to a greater depth than do students in professional degree programs. Doctoral students emphasize research as a major part of their degree programs. An active research program is a vital component of the Nicholas School of the Environment and Earth Sciences, and most of the research projects in the school utilize Ph.D. candidates as research assistants. Except for the Division of Earth and Ocean Sciences, the Nicholas School does not normally consider applications for the M.S. degree, although some students may be awarded an M.S. as part of a doctoral program.

All faculty in the Nicholas School are members of the faculty of the Graduate School of Duke University and are actively involved in the training of doctoral (Ph.D.) students in the fields of earth and ocean, marine, and environmental sciences. Doctoral students should note that policies and procedures for admission and registration, academic regulations and requirements for degrees are given in detail in the Bulletin of the Graduate School and not repeated in detail here.

Doctoral students are admitted to work with Nicholas School faculty by three pathways: 1) direct application to the subject areas “Environment” or “Earth and Ocean Sciences” within the Graduate School at Duke; 2) application to the University Program in Integrated Toxicology (UIT), with an advisor chosen from within the Nicholas School faculty. 3) application to the University Program in Ecology (UPE), with an advisor chosen from within the Nicholas School faculty;

Special Considerations for Ph.D. Students in Resource Economics and Policy

Students accepted for a doctoral program in resource economics and policy must have significant previous training in economics, political science or another social science. Doctoral candidates in resource and environmental economics must take substantial course work in Duke’s Department of Economics and pass the department’s qualifying examinations in economic theory. Doctoral candidates in resource and environmental policy must take substantial course work in political science, public policy or political economy in relevant departments at Duke or cooperating universities.

Doctoral Study at the Duke University Marine Laboratory

Faculty in the Division of Coastal Systems Science and Policy at the Duke University Marine Laboratory are members of the “Environment” subject area within the Graduate School. Doctoral students planning to work at the Marine Lab typically spend one to three
semesters taking graduate classes on the Durham campus before moving to Beaufort to complete their research; however, residence in Durham is not a requirement. Although residency of the advisor is not necessary to study at the Marine Lab, some sources of funding are contingent upon having an advisor from the Marine Lab’s resident faculty.

Cooperative University Programs

University Program in Integrated Toxicology (UIT)

Some faculty of the Nicholas School are members of the Duke University Program in Integrated Toxicology (UIT). This program operates under a specific charter to develop holistic and innovative approaches to studies of toxicology and to training students and postdoctoral fellows in this field.

Research in environmental toxicology within the Nicholas School focuses on molecular and biochemical aspects of pollutant metabolism, adaptations of organisms in polluted environments, and modes of toxic action. This work employs freshwater, marine, and terrestrial organisms as toxicological models. Toxicological research in the School strives to achieve a fundamental understanding of the fates and effects of contaminants in the environment and to elucidate linkages between human and ecosystem health. To achieve this goal, the curriculum and research activities of the program are designed to teach students the principles and methodologies of environmental chemistry, biochemistry, molecular biology, pathology, toxicology, ecology and quantitative analysis. Upon completion of doctoral studies, these students are experienced in the design, execution and interpretation of current research in environmental toxicology. Completion of this training at the doctoral level provides career opportunities in academia, industry and research laboratories.

Students seeking admission to this Ph.D. program should file an application with the Graduate School, seeking admission to one of the departments participating in the UIT Program, including the Nicholas School. Direct inquiries to Dr. Richard T. Di Giulio, Director, Integrated Toxicology Program, Box 90328, Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708; Internet: http://www.duke.edu/web/toxicology.

University Program in Ecology (UPE)

Duke hosts strong research programs in ecology, with highly productive faculty from a number of departments working at all levels of biological organization—from the organism to the ecosystem. Areas of special strength include global change ecology, evolutionary ecology and forest and marine ecology. In the disciplinary category “ecology, evolution and behavior” the National Research Council rated Duke in 1993 as one of the top three programs in the nation.

The University Program in Ecology was formed in 2000 to provide a common home for students who are pursuing doctoral studies in ecology in various departments across the University, including many students in the Nicholas School.

Students are admitted for doctoral work in the University Program in Ecology in one of two ways: 1) direct admission to the program, through the Graduate School; or 2) admission to the doctoral program of one of the departments participating in the program. Departments participating in the Ecology Program guarantee that any student admitted via the first track is automatically admitted for Ph.D. study in the home department of the student’s major professor. Students in the latter track earn their degrees in the department sponsoring their admission and receive a Certificate of Graduate Study in Ecology from the University Program in Ecology.
The University Program in Ecology admits students with the promise of two years of financial support from the program, following which support is garnered from the department of the student’s selected major advisor. Students are normally supported for up to five years of doctoral study if they maintain satisfactory progress toward their degree.

Students seeking admission to the University Program in Ecology should file an application with the Graduate School, specifying consideration by the UPE or one of the participating departments, which include those in the Nicholas School. Direct inquiries to ecology@duke.edu or to Graduate Studies, University Program in Ecology, Box 90328, Duke University, Durham, NC 27708. Further information on the University Program in Ecology can be found on the Internet at: http://www.ecology.duke.edu.

Qualification of Students

Students seeking admission to the Graduate School must have earned an A.B. or B.S. degree (or the equivalent in the case of foreign students) from an accredited institution. Usually the student should have majored in the area of intended graduate study or one closely related to it. Because research is such an integral part of doctoral education in the Nicholas School, the student’s undergraduate record must evidence the capability, motivation and commitment to conduct independent study and research at an advanced level.

Admission

Applicants for the Ph.D. degree must use the Graduate School’s electronic application, available at http://www.gradschool.duke.edu. An individual faculty member in the Nicholas School must accept responsibility to advise an applicant before admission can be offered; thus, students applying to the doctoral programs are strongly encouraged to correspond with prospective faculty advisors and visit the campus. Brief summaries of individual faculty research interests are given with the faculty listing in this Bulletin.

Graduate School Registration

Students in Ph.D. degree programs initiate registration through the Directors of Graduate Studies of the Nicholas School (in Earth and Ocean Sciences, Environment, University Program in Ecology, and University Program in Integrated Toxicology). Registration is completed through the online registration system. Registration requirements and procedures are described in the Bulletin of the Graduate School.

Fellowships and Assistantships for Doctoral Students

Students in all of the doctoral programs are normally supported for up to five years of study if they maintain satisfactory progress toward their degree. Some students receive fellowships to support their studies, while others are employed as teaching assistants, receiving a stipend that covers tuition and fees. Other students are employed as research assistants, with funding derived from research grants managed by their major professor. In recent years, a significant fraction of the doctoral students have also been successful in national competition for graduate fellowships from the National Science Foundation, National Aeronautics and Space Administration National Oceanic and Atmospheric Administration, Environmental Protection Agency and other agencies.

Normally, students are supported on teaching assistantships for only the first two or three years of their graduate study. After that, they are usually supported on research assistantships for the remainder of their graduate programs. Students supported on teaching or research assistantships may also receive support for the three summer months from research funding.
The hours of assistance may limit the number of credit hours for which a student may register. Normally, Ph.D. students who receive assistantships for ten hours per week are limited to 12 units of credit per semester. Exceptions require the permission of the student’s advisor.

Fellowships Offered through the Nicholas School

W. D. Billings Fellowship

The University Program in Ecology awards the W. D. Billings Fellowship to an entering doctoral student who plans to specialize in some area of plant ecology. The award covers all tuition and fees and provides a full stipend for the first year of graduate study. The fellowship was established by Shirley M. Billings in honor of her husband, the late W. Dwight Billings, a physiological plant ecologist at Duke for more than 30 years who was renowned for his work in arctic and alpine environments.

Rachel Carson Fellowship

Established by William C. Powell, Thomas E. Powell Jr. and friends, the Carson Fund provides fellowships to Ph.D. candidates who use the Rachel Carson Sanctuary site in Beaufort, NC, as a major component of their research. First consideration will be given to Ph.D. students in residence at the Duke University Marine Laboratory.

Robert W. Safrit Jr. Fellowship

Established by Robert W. Safrit, this fellowship is for students at the Duke University Marine Laboratory.

Harvey W. Smith Graduate Fellowship

Established by Evelyn Chadwick Smith, the Harvey W. Smith Graduate Fellowship Endowment provides fellowships to doctoral candidates in marine science.

Dr. Larry Widell Memorial Fellowship

Established by Christopher M. Widell, this endowment provides fellowships to Nicholas School students, with preference given to doctoral candidates.

Fellowships Offered through the Graduate School

The Duke University Graduate School offers a number of campus-wide competitive fellowships and scholarships. The *James B. Duke Fellowships* and *University Scholars Program* are available to incoming doctoral students in all departments. Advanced students may apply for the *Katherine Stern Fellowship*, which provides dissertation-year support. They are also eligible for conference travel awards and for a variety of other special internships or fellowships. The Graduate School also provides a number of awards for international research travel for doctoral students.

Minority doctoral students may receive support from the *Duke Endowment Fellowships* and *Presidential Fellowships* or through the *National Consortium for Graduate Degrees for Minorities in Engineering and Science Inc.*

The *Frederick K. Weyerhaeuser Forest History Fellowship* is given annually by the Forest History Society to a Duke University graduate student who wishes to study broadly in the area of forest and conservation history.

For detailed information about campus-wide financial aid opportunities for doctoral students, including application procedures, please consult the *Bulletin of the Graduate School*.

National, Regional and Foundation Awards

In addition to those awards available through the Nicholas School or the university, students are urged to compete for national and foundation awards for graduate study. Of
particular interest to doctoral students in the Nicholas School are National Science Foundation Graduate Fellowships and Minority Fellowships, NASA Doctoral Fellowships in Global Change and Earth System Science, and EPA STAR Fellowships. The Web sites of these agencies offer details on applying for these fellowships.

Teaching Assistantships

Each year a selected number of Ph.D. candidates may be offered a financial aid package consisting of full tuition plus a monthly stipend. The tuition is a scholarship from School funds and is tax exempt. The monthly stipend ($1,888.89 per month in 2006–2007) requires up to 15 hours of work per week during the nine-month academic year and is taxable. Students receiving these stipends are assigned by the Director of Graduate Studies to serve as teaching assistants for various faculty.

Research Assistantships

Funded from grant and contract research under the direction of various members of the faculty, research assistantships provide support during the course of study of the Ph.D. candidate. Typically, the research assistant completes one or more phases of a research project under the direction of the principal investigator, a member of the faculty. Normally, the research completed forms a substantial component of the requirements of the Ph.D. dissertation. However, in some instances students may pursue dissertation research in an unrelated area of study.

The academic year stipend is salary for research involving up to 20 hours per week. A regular schedule of research under the direction of the principal investigator must be maintained; therefore, some research assistantships require full-time service during the summer.
Nicholas Institute for Environmental Policy Solutions

The Nicholas Institute for Environmental Policy Solutions at Duke University is a nonpartisan institute founded in 2005 to engage with decision makers in government, the private sector, and the nonprofit community to develop innovative proposals that address critical environmental challenges.

The Institute staff work in conjunction with Duke faculty and students, as well as partners outside Duke’s walls, to produce the research and policy design that best informs decisions by the government, private sector, and nonprofit community on environmental matters.

The Institute, operating in conjunction with the Nicholas School, is housed in the Levine Science Research Center on the Duke campus, and later will move with the school into its new facility Nicholas Hall, which is still in the planning stages. The state-of-the-art facility will be designed to meet the highest standards for “green” buildings. The Institute also maintains an office in Washington, D.C.

Mission

The Nicholas Institute’s mission is to become the nation’s leading source of effective solutions to critical environmental problems—by providing policymakers in the public and private sectors with unbiased, science-driven evaluations of policy risks and rewards, and innovative, practical ideas for meeting complex challenges.

In the short term, the Nicholas Institute aims to fill a major void in the environmental policy debate by serving as an independent source of credible information that will be equally trusted by all parties and fully capable of bridging the divisions that too often prevent progress on consequential issues.

Considering the areas of excellence at Duke and the policy decisions that the world will face in the coming decades, the Nicholas Institute is developing programs in seven core areas beginning with climate, energy, coasts and oceans, and water. Future areas include conservation and environmental services, environmental health, and environmental literacy. In all of these areas, the Institute will work at multiple jurisdictional levels—international, national, regional, state—developing environmental solutions where they can be most effective.

By the end of the decade, the Nicholas Institute aims to be the first organization turned to by businesses seeking to craft workable strategies to address environmental problems; by policymakers seeking to understand environmental science and draft balanced, cost-efficient legislative and regulatory solutions; and by news media seeking the best thinking and most reliable data to inform an environmental article.

Leadership

Founded with a $70 million gift by Boston Scientific Chairman and Duke alumnus Peter Nicholas, the Nicholas Institute has assembled a diverse, distinguished leadership team that reflects Nicholas’ commitment to sound science, independent thinking, and consensus-building. That commitment starts with Director Tim Profeta, former Counsel to
Sen. Joe Lieberman (D-CT), and Advisory Board Chairman William K. Reilly, former administrator of the Environmental Protection Agency under President George H.W. Bush.

Expertise

The Nicholas Institute’s efforts to inform and advance the great environmental debates of our time will be supported by the extraordinary resources of one of the world’s leading research institutions—from the marketing savvy of Duke’s Fuqua School of Business to the hard policy analyses conducted at the Terry Sanford Institute of Public Policy to the biomedical research facilities of the Duke Medical Center. The core of the Institute’s capabilities reside in the Nicholas School, one of the world’s premier graduate research and professional schools for the interdisciplinary study of the environmental, biological, physical and social sciences. The 50-plus faculty members of the Nicholas School have a broad range of expertise with particular strengths in the fields of global change science, ecosystem science, coastal ecosystem processes, environmental health, and environmental economics.

Advisory Board

Susan S. Bell, Vice President, The William and Flora Hewlett Foundation
Rev. Richard Cizik, Vice President for Governmental Affairs, National Association of Evangelicals
Marshall Field V, Chair, Old Mountain Co., and Nicholas School Board of Visitors (Ex Officio)
Charles O. Holliday Jr., Chairman and CEO, DuPont
Fred Krupp, President, Environmental Defense
Jane Lubchenco, Valley Professor of Marine Biology and Distinguished Professor of Zoology, Oregon State University
N. J. Nicholas Jr., Director of Boston Scientific Corp., Xerox Corp. and Time Warner Cable; former co-CEO of Time Warner Inc.
Pete Nicholas, Chairman, Boston Scientific Corp.
Patrick F. Noonan, Chairman Emeritus, The Conservation Fund
Cornelia Quennet-Thielen, Bundesprasident, Deputy Head of the Office of the President of Federal Republic of Germany and Director General for Central Administration
William K. Reilly, President, Aqua International Partners, Former EPA Administrator
William R. Rhodes, President & CEO, Citibank, N.A.
Carter Roberts, President and CEO, World Wildlife Fund - U.S.
James E. Rogers, President & CEO, Duke Energy
William L. Rogers, Managing Director and Chair, The Halifax Group
Virginia Sall, Co-founder and Director of the Sall Family Foundation
Jim Salzman, Chair, Nicholas Institute Faculty Advisory Committee
William H. Schlesinger, Dean, Nicholas School of the Environment and Earth Sciences, Duke University
Joseph A. Stanislaw, Independent Senior Advisor, Deloitte & Touche

Partnerships and Projects

In its first year, the Institute engaged in a number of partnerships and projects and produced several consensus documents and reports including:

Partnerships

The Climate Change Policy Partnership

Duke Energy Corp. pledged $2.5 million to Duke University to support the partnership—a new industry-university collaboration pooling the expertise of the Institute,
the Nicholas School, the Center on Global Change and Duke Energy to address the problems of global climate change. During the partnership’s first phase, researchers will assess the environmental and economic costs and benefits of federal policy options for addressing emissions of carbon dioxide and other greenhouse gases, which most scientists view as the cause of global warming.

The Public-private Partnership to Develop and Market Hog Waste Byproducts in North Carolina

The Nicholas Institute is a participant in a new $750,000 public-private partnership to develop value-added products from hog waste, evaluate the economic potential of these products to generate income for North Carolina farmers and spur the widespread use of new, cleaner waste management systems on the state’s hog farms. The project is funded with a $375,000 grant to North Carolina State University from the USDA’s Natural Resources Conservation Service. The grant will be matched with funds from a collaboration of public and private partners spearheaded by Environmental Defense and Frontline Farmers.

Reports and Consensus Documents

• A Cap and Trade System for Greenhouse Gases—2005, a report by the Nicholas Institute for California policymakers identifying the basic design principles of an effective cap and trade system for regulating greenhouse gas emissions at the state level.

Working with Students

The Institute provides a number of growing opportunities for Nicholas School doctoral and professional graduate students, as well as students from other Duke units and other universities to engage in a variety of projects.

Students may also have the opportunity to work with the institute in the Nicholas School assistantship program, as Keohane fellows, Climate Change Policy Partnership fellows and through various other special assignments.

In early 2006, Nicholas School doctoral students initiated the Nicholas Institute Graduate Liaisons (NIGL) to facilitate communications between the Institute and the Duke student body. A member of NIGL joins the institute for regular meetings to learn about current Institute activities and opportunities for students.

Among NIGL’s initiatives are the compilation of a directory of graduate students with relevant research interests; the development of a rapid research response network that can quickly provide information and brainpower to institute projects; a conduit through which graduate research can be passed along to the appropriate institute staff members for inclusion in their work.

Internet Address: www.nicholas.duke.edu/institute
Research Centers

Research centers in the Nicholas School of the Environment and Earth Sciences are by design and intent flexible, multidisciplinary units. A major aim is to bring together specialized groups of scholars and professionals from many disciplines to focus their attention on current natural resource and environmental problems. The centers are headed by a director and staffed by an interdisciplinary faculty from Duke, neighboring universities and a variety of public and private research organizations. Depending upon the level of funding, the centers may also employ research assistants and other support staff. The centers do not offer courses or degrees; rather, they offer students, scientists and other professionals an opportunity to participate in research through collaboration with affiliated faculty.

Center for Comparative Biology of Vulnerable Populations

Director: Richard T. Di Giulio, Professor of Environmental Toxicology, Nicholas School of the Environment and Earth Sciences

The Center for Comparative Biology of Vulnerable Populations (CCBVP) supports research aimed at understanding how biological, physiological, and social aspects of vulnerability alter the effect of the environment on human health. Despite the tremendous inter-individual variability in the response to environmental toxins, we simply do not understand why certain people develop disease when challenged with environmental agents, and others remain healthy. Although an emerging consensus suggests that many of the complex and prevalent diseases that humans develop occur as a result of multiple biologically unique gene-gene and gene-environment interactions, this conceptual framework is limited. In fact, the development of disease in humans, environmental and otherwise, is far more complex.

Environmental exposures affect those that are vulnerable temporally (age), spatially (geographically), and by unique circumstance (co-morbid disease, nutritional status, economic status, race, and genetics). Even this paradigm fails to address the complex interaction of endogenous and exogenous risks that ultimately interact to cause disease. While the recent advances in human and molecular genetics provide an unparalleled opportunity to understand how genes and genetic changes interact with environmental stimuli to either preserve health or cause disease, without accounting for the temporal, spatial, and other unique components of an individual’s microenvironment, our understanding of environmental health will remain incomplete. The CCBVP builds on established strengths in environmental health, toxicology, genetics/genomics, bioinformatics, spatial analysis, and environmental policy and ethics, and places particular emphasis on the use of complementary biological systems. Primary funding source: National Institute of Environmental Health Sciences. Internet: http://www.env.duke.edu/ccbvp/.
Center for Geospatial Medicine

Director: Marie Lynn Miranda, Associate Research Professor, Division of Environmental Sciences and Policy, Nicholas School of the Environment and Earth Sciences

The Center for Geospatial Medicine (CGM) is an interdisciplinary center that supports research on how host, environmental, and social aspects of vulnerability combine to affect children’s health and well-being. CGM is a major research project of the Children’s Environmental Health Initiative. Accounting for temporal, spatial, and other unique components of children’s physical environments, when combined with variance in host and psychosocial factors, can greatly enhance our understanding of children’s health. The mission of the CGM is to develop systematic, spatially-based methods for analyzing the pathways through which the environment, host factor, and psychosocial domains jointly shape child health and well-being.

The CGM promotes interdisciplinary research interactions among programs in biomedicine, environmental health, statistics, and social sciences to link social, environmental, and host factor vulnerability using advanced spatial statistical approaches in combination with techniques from genetics and genomics. Using pregnancy outcomes as a prototype health endpoint, the CGM is developing a generalized framework for applying these methods to a wide variety of health endpoints, including autism, asthma, ADHD, and obesity. Internet: http://www.env.duke.edu/cgm/

Center on Global Change

Faculty Director: Robert B. Jackson, Professor of Environmental Sciences and Biology

Associate Director: Randy Best

Duke University created the Center on Global Change (CGC) in 2001 as a university-wide initiative to facilitate innovative, interdisciplinary research and graduate education in the area of global change science. The goals of the Center are to advance scientific understanding, provide new educational opportunities, attract additional funding from public and private entities and enhance Duke’s reputation as a leader in global change research and education.

The scope of the Center is intentionally broad to encourage creativity and to leverage Duke’s strengths across a range of disciplines, including ecology, biology, earth sciences, ocean sciences, statistics, engineering, computer sciences and math. Rather than focus on a single, specific scientific problem, the Center supports multiple efforts by faculty and students to create new collaborations, both internal and external to the University, across traditional disciplines and on a range of topics of relevance to global change.

In 2005 the CGC, Nicholas School of the Environment and Earth Sciences, and the Nicholas Institute for Environmental Policy Solutions initiated the Climate Change Policy Partnership. This initiative conducts climate change and energy policy research in partnership with industrial sponsors. 2005 also saw the CGC established as the SE Regional Center of the Department of Energy’s National Institute for Climate Change Research program. Under this program, the CGC administers a 5-year, $10 million climate change research program for Universities in the southeastern United States.

Other activities at the CGC include: interdisciplinary working groups of Duke and non-Duke scientists; a visiting speaker seminar series; symposia and workshops held in...
collaboration with other units at Duke; and the provision of space and support for visiting scholars in residence. Internet: http://www.nicholas.duke.edu/cgc.

Center for Hydrologic Science

Co-directors: Dr. Gabriel Katul, Professor of Hydrology, Division of Environmental Science and Policy, Nicholas School of the Environment and Earth Sciences; Dr. John Albertson, Associate Professor of Civil Engineering, Pratt School of Engineering

From global climate change to flooding to hazardous waste storage, the science of hydrology plays a key role in many problems facing society. Rivers, lakes, plants, soils, rocks and snow and ice provide storage for water on land. Hydrologists are concerned with the magnitude and viability of this storage over time and space and the rate of transfer of water from one storage area to another. Studies of these storage and transfer processes allow us to examine a variety of environmental problems and devise solutions for them.

Hydrologists have their roots in and depend upon a variety of associated disciplines including civil engineering, ecology, environmental engineering, geology, geophysics, mathematics, meteorology and soil science. The Center for Hydrologic Science serves as an integrating center for hydrology research and graduate level hydrology education at Duke University. The Center offers fellowships for graduate study in hydrology and organizes a lecture series that attracts speakers of international stature. Colloquia are organized for student and faculty presentations from Duke as well as the nearby University of North Carolina at Chapel Hill and North Carolina State University. For students engaged in Ph.D. research the Center offers a Certificate in Hydrology that is granted in addition to the Ph.D. degree in their host department. Internet: http://www.nicholas.duke.edu/chs.

Center for Marine Conservation

Director: Larry B Crowder, Stephen Toth Professor of Marine Biology, Duke University Marine Lab, Nicholas School of the Environment and Earth Sciences

The Duke Center for Marine Conservation (CMC) is an interdisciplinary consortium focusing on research, education, and outreach in marine conservation. Recognizing the interdisciplinary and often global nature of marine conservation, the center seeks to integrate across the natural and social sciences and to engage international partners. It focuses on problem solving and incorporating science into regional, national and international policy-making.

Key elements of the center’s approach include: developing geospatial analysis tools to integrate, display and analyze spatially explicit data for dynamic oceans; collecting, cleaning and archiving spatially-explicit data on the physical, biological, social economic and governance features of coastal and ocean ecosystems; and developing new biophysical and social scientific analyses in support of policy development for integrated place-based management of coastal and marine ecosystems.

The faculty of Duke CMC is uniquely qualified to address the key issues for developing a place-based approach for the management of these systems. They provide an unparalleled range of expertise and experience from natural and social sciences, as well as experience with integrating science into policy in a variety of marine systems. By partnering with the Nicholas Institute for Environmental Policy Solutions, Duke CMC will provide government officials with the tools and approaches that will enhance their ability to implement ecosystem-based management. While we are elaborating the concepts and developing the tools, we will also educate a new generation of researchers and

Center for Tropical Conservation

Co-directors: John Terborgh, James B. Duke Professor of Environmental Science, Division of Environmental Science and Policy, Nicholas School of the Environment and Earth Sciences

The Center for Tropical Conservation (CTC) was established to focus the activities of Duke faculty and students who share a common concern for tropical biodiversity. The goal of the Center is to unite biological and scientific inquiry with sound political economic analysis and conservation advocacy. The CTC serves to gather and disseminate pertinent information and to promote and coordinate research relevant to biodiversity and the sustainable development of natural resources.

The research and training agenda of the Center focuses on the integration of environmental science and environmental policy and the processes by which policies can be adapted to reflect new scientific findings. Development of methods for managing natural resources is coupled with economic analysis to suggest policy reforms that promote the sustainable use of natural resources such as land, water, forests and biodiversity.

Dr. John Terborgh, co-director of the CTC, operates Cocha Cashu Biological Station in Manu Biosphere Reserve, Peru. Located in the remote Peruvian Amazon, Cocha Cashu has hosted researchers from all over the world in a variety of fields. Investigators from a variety of disciplines have produced an impressive body of work, resulting in over 300 publications. Internet: http://www.duke.edu/web/etc.

Children’s Environmental Health Initiative

Director: Marie Lynn Miranda, Associate Research Professor, Division of Environmental Science and Policy, Nicholas School of the Environment and Earth Sciences

The Children’s Environmental Health Initiative (CEHI) is a research, education, and outreach program committed to fostering environments where all children can prosper. Because of their behavior, metabolism and developmental status, children are especially vulnerable to environmental hazards. Yet policy makers, public health officials, and child advocates currently lack the appropriate infrastructure to evaluate children’s risk and potential exposure across a broad range of risks. Unable to identify where the highest risk of exposure occurs and how various environmental health hazards act in the aggregate, children’s environmental health programs remain mitigative instead of preventive. Thus, children must first become sick before they can be protected.

CEHI focuses on incorporating innovative spatial analysis into children’s environmental health research. Throughout its projects, CEHI is committed to issues of environmental justice and children’s environmental health. All CEHI projects include Spanish/English bilingual community outreach and dissemination efforts. Internet: http://www.nicholas.duke.edu/cehi.

Duke University Wetland Center

Director: Curtis J. Richardson, Professor of Resource Ecology, Division of Environmental Science and Policy, Nicholas School of the Environment and Earth Sciences

The goal of the Duke University Wetland Center is to provide sound scientific knowledge that will lead to sustainable wetland management and values for the nation and the world. The Center works toward this goal by conducting, sponsoring and coordinating research and teaching on critical wetland issues, especially wetland restoration of ecosystem structure and function.
Perhaps no single environmental issue has so polarized public opinion as the protection of wetlands. Part land, part water, wetlands are ecosystems in which water level and low oxygen support a unique ecological habitat conducive to the development of specific plant and animal species. Wetlands improve water quality; provide flood control; supply habitat for fish, waterfowl, and wading birds and supply a vital link between surface water and groundwater. However, these properties of wetlands are often poorly understood by the people expected to comply with wetland regulations.

By bringing together scientists and professionals, the Duke University Wetland Center is able to focus attention on these and other wetland issues of regional, national and international scale. Core researchers for the Center are the director, faculty, visiting scholars and graduate students. As part of a professional school within a private university, the Duke Wetland Center works independently on wetland issues without the political pressures often brought to bear upon public institutions. Internet: http://www.nicholas.duke.edu/wetland.

Southern Center for Sustainable Forestry

Director: Daniel D. Richter Jr., Professor of Soils and Forest Ecology, Division of Environmental Science and Policy, Nicholas School of the Environment and Earth Sciences

The Southern Center for Sustainable Forestry engages in innovative research and practical applications for enhancing sustainable forest management in the South. Research has examined economic and ecological effects of wood chip facilities, leading industrial and environmental certification systems, and long-term changes in soils and ecosystems as affected by forest land history and current management practices.

The Center is a cooperative organization with three participant institutions: North Carolina State University, Department of Forestry; Duke University, Nicholas School of the Environment and Earth Sciences; and the Division of Forest Resources of the North Carolina Department of Environment and Natural Resources. Internet: http://www.nicholas.duke.edu/scsf.

Superfund Basic Research Program

Director: Richard Di Giulio, Professor of Environmental Toxicology, Division of Environmental Science and Policy, Nicholas School of the Environment and Earth Sciences.

It is increasingly recognized that early life stages of humans and other organisms are particularly sensitive to environmental stressors such as pollutants. The Superfund Basic Research Center unites researchers from the Nicholas School of the Environment and Earth Sciences, the Pratt School of Engineering, and the Duke University Medical Center in examining the fate and developmental effects of chemicals found at Superfund sites. The Center is supported by the National Institute of Environmental Health Sciences (NIEHS).

The goal of the Center is to study the mechanisms of exposure and toxicity in humans and ecosystems to specific Superfund chemicals that are selected based upon their potential importance as developmental toxicants. Of particular interest are selected pesticides that affect development of the nervous system, hydrocarbons that impact development of the cardiovascular system, and metals that produce an array of developmental effects. In addition to conducting basic research in these areas, the Center’s role includes communicating this information to health professionals, community leaders and the public. Internet: http://www.duke.edu/web/superfund.
The Faculty
Core Faculty

ABBREVIATIONS

ESP – Division of Environmental Sciences and Policy
EOS – Division of Earth and Ocean Sciences
CSSP – Division of Coastal Systems Science and Policy

* - holds a secondary appointment in the Nicholas School of the Environment and Earth Sciences, with primary appointment elsewhere at Duke University

John D. Albertson, Associate Professor of Civil and Environmental Engineering;
B.S., Civil Engineering, State University of New York, Buffalo; M.B.A., Finance, University of Hartford; M.E.S., Hydrology, Yale University; Ph.D., Hydrologic Science, University of California, Davis
E-mail: john.albertson@duke.edu

Dr. Albertson works in the field of land-atmosphere interaction, which is centered on the connection between surface hydrology and meteorology in terrestrial ecosystems. The discipline seeks to develop a comprehensive theory to describe the exchange of mass (e.g. water and CO₂), energy and momentum between the land and atmosphere over a wide range of spatial and temporal scales. The ultimate goal is to provide the theoretical framework and tools needed to quantitatively integrated land surface fluxes over large regions of complex terrain. (ESP)

Richard Anderson, Assistant Professor of Environmental Systems Analysis; B.S.E., Engineering Mechanics, M.S.E., Mechanical Engineering, Ph.D., Geography and Environmental Engineering/Environmental Systems Analysis, Johns Hopkins University.
E-mail: Richard.Anderson@duke.edu

Dr. Anderson's research focus lies in developing rigorous and useful applications of decision and systems analysis to real world watershed management and water resources problems. The main tools he employs are decision analysis, systems modeling, applied statistics, and optimization. (ESP)

Paul A. Baker, Professor of Geochemistry; B.A., Geology, University of Rochester; M.S., Geology, Pennsylvania State University; Ph.D., Earth Sciences/Marine Geology, Scripps Institution of Oceanography, University of California, San Diego
E-mail: pbaker@duke.edu

Dr. Baker’s major focus is on understanding climatic and oceanographic history of the tropics as preserved in the sedimentary records of lakes, paleolakes, rivers and the ocean.
His work involves field as well as laboratory study. Analytical methods that he employs include stable isotopic and elemental geochemistry as well as all types of traditional geological and geophysical methods. (EOS)

Lori Snyder Bennear, Assistant Professor of Environmental Science and Policy; A.B. Economics and Environmental Studies, Occidental College; M.A., Economics, Yale University; Ph.D., Public Policy, Harvard University
Email: lori.bennear@duke.edu

Dr. Bennear’s areas of specialization are environmental and natural resource economics, applied microeconomics, and empirical methods. Her research focuses on estimating the effect of different regulatory innovations on measures of facility-level environmental performance, such as pollution levels, chemical use, and technology choice. Her recent work has focused on measuring the effectiveness of management-based regulations, which require each regulated entity to develop its own internal rules and initiatives to achieve reductions in pollution, as well as the effectiveness of regulations that mandate public reporting of toxic emissions. (ESP)

Emily S. Bernhardt, Assistant Professor of Biogeochemistry; B.S., Biology, University of North Carolina, Chapel Hill; Ph.D., Ecology and Evolutionary Biology, Cornell University
Email: emily.bernhardt@duke.edu

Dr. Bernhardt is broadly interested in the capacity of ecosystems to retain nutrients and energy in the face of human accelerated environmental change. Her research primarily focuses on controls of carbon and nitrogen cycling in streams and soils. The majority of her research to date has taken place in aquatic systems, but she considers biogeochemistry in a watershed context and her lab group currently works in upland, riparian and stream ecosystems. Much of Dr. Bernhardt's recent research takes advantage of large scale river restoration projects to understand how stream and riparian ecosystems function. (ESP)

Celia Bonaventura, Professor of Cell Biology; B.A., Zoology, San Diego State University; Ph.D., Biochemistry, University of Texas at Austin
Email: bona@duke.edu

Dr. Bonaventura’s research is focused on the structure/function relationships of oxygen and electron-transport proteins. She compares human proteins to those of marine organisms in structure/function assays that involve equilibrium measurements and complementary studies of rapid reaction kinetics, using UV/VIS and fluorescence spectroscopy and novel methods of spectroelectrochemistry. This work has led to an increased understanding of molecular adaptations in the respiratory proteins, with a focus on interactions with nitric oxide and reactive oxygen species. Dr. Bonaventura’s comparative studies illustrate aspects of environmental adaptations and mechanisms of toxicity associated with exposure to free radicals and metals. (CSSP)

Joseph Bonaventura, Research Professor of Cell Biology; B.A., Zoology, San Diego State University; Ph.D., Biochemistry, University of Texas at Austin
Email: joeb@duke.edu

Dr. Bonaventura’s research involves marine organisms found in diverse environments. He studies their red blood cells and respiratory proteins in order to understand molecular adaptations and the mechanisms that give rise to functional flexibility. Dr. Bonaventura also examines the kinetics and equilibria of ligand binding to hemoglobins, hemocyanins and cytochrome c oxidase. These studies are complemented by work in which properties of chemically modified, crosslinked and immobilized forms of biologically active molecules are characterized. His recent research concerns the development of a synthetic blood
substitute for humans. A new focus concerns the biochemistry of nitric acid in the human body and the development of a hypothesis of how this molecule might act as a regulator of the biosphere. (CSSP)

Alan E. Boudreau, Professor of Geology; B.A., Geology, University of California, Berkeley; M.S., Geology, University of Oregon; Ph.D., Geology, University of Washington
E-mail: boudreau@duke.edu

Dr. Boudreau’s research has focused on understanding the crystallization of large layered intrusions, with particular attention to the Archean Stillwater complex in Montana. Besides the intriguing problems proposed for the crystallization of magmas, these intrusions are host to important mineral reserves. Much of Dr. Boudreau’s recent work has investigated the degassing history of these intrusions and the role of volatiles in the formation of platiniferous ore zones in South Africa. Another fundamental problem involves the mechanisms by which igneous layering may develop. Dr. Boudreau has worked on models that challenge the conventional “two magma” mixing models often called upon to explain such features. The search for new observations to constrain and test these and other hypotheses is a major focus of his studies. (EOS)

Lisa M. Campbell, Rachel Carson Assistant Professor of Marine Affairs and Policy;
B.A.& Sc., Arts and Sciences, McMaster University, Canada; M.A., Geography and Environmental Studies, University of Toronto; Ph.D., Geography, Cambridge University
E-mail: lcampbe@duke.edu

Dr. Campbell’s research focuses on policies designed to reconcile wildlife (and other resource) conservation with socio-economic development, primarily in rural areas of developing countries. She studies the process of policy making, the transition from policy to practice, and the impacts of (and responses to) implementation at the local level. At the policy making stage, she examines how the interaction of science and other values, and how negotiations among stakeholders (local people, bilateral agencies, NGOs and experts) inform the process. A major research focus has been on marine turtle conservation policy and its implementation in Latin America and the Caribbean. Dr. Campbell is more generally interested in research methodology, including qualitative methods, interdisciplinary research and ethics. (CSSP)

Norman L. Christensen Jr., Professor of Ecology; A.B., M.S., Biology, California State University, Fresno; Ph.D., Biology, University of California, Santa Barbara
E-mail: normc@duke.edu

Dr. Christensen’s research focuses on the effects of disturbance on the structure and function of populations, communities and ecosystems. Ongoing studies include an analysis of patterns of forest development following cropland abandonment, comparative studies of ecosystem responses to varying fire regimes across temperate North America and research on the utilization of remote sensing systems such as synthetic aperture radar to evaluate long-term changes in forest ecosystems. In addition, Dr. Christensen has written widely on the importance of natural disturbance in the management of forests, shrublands and wetlands. He is interested in the application of basic ecological theory and models to management, and has collaborated with others in the development of the concept of ecosystem management. (ESP)

James S. Clark, H. L. Blomquist Professor of Environmental Science and Policy and of Biology; B.S., Entomology, North Carolina State University; M.S., Forestry and Wildlife, University of Massachusetts; Ph.D., Ecology, University of Minnesota
E-mail: jimclark@duke.edu

Dr. Clark’s research focuses on how global change affects forests and grasslands.
Current projects include studies of plant migrations, the effects of recurrent drought on vegetation cover and fire in the Northern Plains and the effects of aridity and fire on North American temperate and boreal forests during recent millennia. He is also developing approaches to forecast ecosystem change. Analyses of forest succession at Duke University’s Free Air CO₂ Experiment (FACE) are being used to assess how changing atmospheric chemistry is affecting the trajectory of change in modern forests. Dr. Clark has authored more than 100 scientific articles and edited the book *Sediment Records of Biomass Burning and Global Change* (Springer, 1997). (ESP, EOS)

Bruce H. Corliss, Professor of Earth and Ocean Sciences; B.A., Geology, University of Vermont; M.S., Ph.D., Oceanography, University of Rhode Island
E-mail: bruce.corliss@duke.edu

As a geological oceanographer, Dr. Corliss’s research interests include the ecology, functional morphology and geochemistry of deep-sea benthic foraminifera, Cenozoic paleoceanography and deep-sea benthic ecology. His early work dealt with the distribution of Quaternary deep-sea benthic foraminifera in the Southern Ocean and their relationship with present and past deep bottom water circulation patterns. This effort was followed by studies of Eocene-Oligocene paleoceanography based on the analysis of microfossils and sediments from Deep Sea Drilling Project samples. An ancillary aspect of his research has been in deep-sea sedimentation. Dr. Corliss’s current research deals with the ecology of living deep-sea benthic foraminifera using data from box core samples taken on a number of oceanographic cruises in the Atlantic, Pacific and Arctic Oceans. (EOS, CSSP)

Larry B. Crowder, Stephen Toth Professor of Marine Biology; B.A., Biology and Mathematics, California State University, Fresno; M.S., Ph.D., Zoology, Michigan State University
E-mail: lcrowder@duke.edu

Dr. Crowder’s research centers on predation and food web interactions, mechanisms underlying recruitment variation in fishes, and population and food web modeling in conservation biology. He has studied food web processes in estuaries and lakes and has used observational, experimental and modeling approaches to understand these interactions in an effort to improve fisheries management. He co-directed the South Atlantic Bight Recruitment Experiment (SABRE) and researches the life histories of estuarine-dependent fishes. Dr. Crowder conducts model and statistical analyses to assist in endangered species management for both aquatic and terrestrial species, notably sea turtles and red-cockaded woodpeckers. Recently he has begun developing more extensive programs in marine conservation, including research on bycatch, spatial analysis, nutrients and low oxygen, marine invasive species and integrated ecosystem management. (CSSP, ESP)

Thomas Crowley, Nicholas Professor of Earth Systems Science; A.B., Geology, Marietta College; M.S., Ph.D., Geological Sciences, Brown University
E-mail: tcrowley@duke.edu

Dr. Crowley’s basic area of research is climate change, particularly reconstructing past climates from marine cores or coral records, or modeling them with simple or complex climate models. He has focused on simulation of glaciation throughout the last 600 million years, using coupled climate/ice sheet models to model the major pre-Pleistocene glaciations. In addition, Dr. Crowley has employed simple climate models to simulate the temperature response to past changes in volcanism and solar output and compared the results to various reconstructions of past climate. His work indicates that a surprising amount of the decadal variance in the observed record can be explained by such changes, but that only greenhouse gas forcing can explain the late-20th-century temperature increase. A second
area of new research involves the impact of climate change on the sedimentary record. (EOS)

Richard T. Di Giulio, Professor of Environmental Toxicology; B.A., Comparative Literature, University of Texas at Austin; M.S., Wildlife Management, Louisiana State University; Ph.D., Wildlife Biology, Virginia Polytechnic Institute and State University
E-mail: richd@duke.edu

Dr. Di Giulio’s research is concerned with mechanisms of contaminant metabolism, adaptation and toxicity, and the development of mechanistically-based indices that can be employed in biomonitoring. Of particular concern are mechanisms of oxidative metabolism of aromatic hydrocarbons, mechanisms of free radical production and antioxidant defense, and mechanisms of chemical carcinogenesis, developmental perturbations and adaptations to contaminated environments by fishes. The goals of this research are to bridge the gap between research and the development of tools for environmental assessment, and to elucidate linkages between human and ecosystem health. Dr. Di Giulio serves as Director of Duke University’s Integrated Toxicology Program and the Superfund Basic Research Center. (ESP, CSSP)

Richard B. Forward Jr., Professor of Zoology and Bass Fellow; B.S., Biology, Stanford University; Ph.D., Biology, University of California, Santa Barbara
E-mail: rforward@duke.edu

Dr. Forward investigates the physiological ecology of marine crustaceans and fishes. His studies focus on sensory physiology and behavioral responses to environmental (e.g. light, temperature salinity) and chemical cues and biological rhythms. In recent studies, Dr. Forward has applied results to vertical migration and selective tidal stream transport. (CSSP)

Deborah Rigling Gallagher, Visiting Assistant Professor of Resource and Environmental Policy; B.S., Chemical Engineering, Northwestern University; M.P.P., Harvard University; Ph.D., Public Policy, University of North Carolina at Chapel Hill,
E-mail: deb.gallagher@duke.edu.

Dr. Gallagher’s research focuses on public policies related to the interaction of business and the environment. Sustainable strategic management and the professionalization of sustainability is a particular focus of her work. In addition, she has examined business-government partnerships for environmental protection, such as brownfields redevelopment and the devolution of environmental public policy implementation to the private sector. (ESP)

*Alan E. Gelfand, James B Duke Professor of Statistics and Decision Sciences and Professor of Environmental Sciences and Policy; B.S., Mathematics, City College of New York; M.S and Ph.D., Statistics, Stanford University
E-mail: alan@stat.duke.edu

Prof. Gelfand’s major research focus is on stochastic modeling of complex systems. In particular, he works primarily on applications in ecology, environmental science, and atmospheric science. A key feature of nearly all of this work is that the system under investigation can be viewed as a space-time process leading to the use of spatio-temporal modeling tools. Hierarchical specifications provide the framework for this effort, enabling convenient synthesis of knowledge about the behavior of the system with available data sources. (ESP)

Jonathan L. Goodall, Assistant Professor of the Practice of Geospatial Analysis; B.S., Civil Engineering, University of Virginia; M.S., Ph.D., Civil Engineering, University of Texas at Austin.
E-mail: jon.goodall@duke.edu

Dr. Goodall’s research focus is on watershed hydrology and water resources
management. His work makes use of geospatial and information technologies such as Geographic Information Systems (GIS) to represent and model complex watershed environments. Dr. Goodall’s current projects include designing a hydrologic information system to support the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), GIS-based modeling of nitrogen transport within the Neuse River Basin, and network-based modeling of man-made ditch systems in coastal North Carolina. (ESP)

Peter K. Haff, Professor of Geology and of Civil and Environmental Engineering; B.A., Physics, Harvard University; Ph.D., Physics, University of Virginia
E-mail: haff@duke.edu

Dr. Haff works on earth surface processes such as the effects of erosion, weathering and soil creep, typically using cellular automata models. Recently, he has become interested in neogeomorphology, the study of the change of the earth’s surface as a result of human activity. A second area of interest is the changing technological environment and the human implications of the difference in rate of change between the technological sphere and the natural sphere. Dr. Haff is also interested in the philosophy and practice of modeling and prediction, specifically the extent to which limitations on our predictive abilities lie in the models we make of earth systems versus in the nature of earth surface processes themselves. (EOS)

Patrick N. Halpin, Gabel Associate Professor of the Practice of Geospatial Analysis; B.A., International Studies, M.P.A., International Management, George Mason University; Ph.D., Environmental Sciences, University of Virginia
E-mail: phalpin@duke.edu

Dr. Halpin’s research interests are in landscape ecology, GIS and remote sensing and conservation management. His research activities include spatial analysis of environment and vegetation patterns, Geographic Information Systems analysis, ecological applications of remote sensing and terrestrial and marine protected area management. Dr. Halpin has conducted research on the international impacts of global climate change in montane environments. He is currently a principal investigator in research projects involving the spatial analysis of environmental change in urban environments, spatial analysis of forest structure and conservation applications of GIS. Dr. Halpin has a special interest in the application of GIS and spatial analyses to environmental problem solving in terrestrial and marine research and management problems. (CSSP, ESP)

Robert G. Healy, Professor of Environmental Policy; B.A., M.A., Ph.D., Economics, University of California, Los Angeles
E-mail: healy@duke.edu

Dr. Healy has a long-term interest in reconciling environmental protection with economic development, particularly in developing countries. In addition, for many years his research has focused on land use policy in the United States. Dr. Healy has written books on state land use policy, rural land markets, the California Coastal Commission, management of eastern National Forests and resource and environmental threats to U.S. agriculture. Before coming to Duke in 1986, he spent 16 years in Washington, DC, at various research institutes, including the Urban Institute, Resources for the Future, and the Conservation Foundation. (ESP)

Gabriele Hegerl, Associate Research Professor; B.A., M.S., Mathematics, Ph.D., Numerical Fluid Dynamics, Ludwig Maximilians University
E-mail: hegerl@duke.edu

Dr. Hegerl’s research is centered on the natural variability of climate and changes in
climate due to natural and anthropogenic changes in radiative forcing. Dr. Hegerl works on defining the role of greenhouse gases in 20th-century warming. She is also studying changes in climate extremes in climate model simulations and attempting to detect them in observations, since these extremes may have a stronger societal impact. Other interests include detecting continental-scale climate change in temperature and rainfall data, climate change in the Atlantic ocean, variability that influences climate on long timescales and changes in modes of climate variability and their influence on temperature, rainfall and climate extremes. (EOS)

David E. Hinton, Nicholas Professor of Environmental Quality; B.S., Zoology, Mississippi College; M.S., Ph.D., Anatomy, University of Mississippi
E-mail: dhinton@duke.edu

Dr. Hinton’s research is focused on the development and growth of fishes in normal health and in the case of toxicant-induced disease. His areas of interest include the development and application of biomarkers of exposure, the examination of adverse effects and sensitivity to studies of early life stages of fishes, and the long-term consequences of early life stage toxicant exposure to adult structure and function. (ESP, CSSP)

Robert B. Jackson, Professor of Biology and Nicholas Institute Professor of Earth and Ocean Sciences; B.S., Chemical Engineering, Rice University; M.S., Plant Ecology, M.S., Statistics, Ph.D., Plant Ecology, Utah State University
E-mail: jackson@duke.edu

Dr. Jackson examines feedbacks between global change and the biosphere. Current projects in his lab include studies of the global carbon and water cycles, biosphere/atmosphere interactions and vegetation change. He leads research projects for two core projects of the International Geosphere Biosphere Programme, Global Change and Terrestrial Ecosystems (GCTE) and Biosphere Aspects of the Hydrological Cycle (BAHC). He is the Director of Duke’s University Program in Ecology and of its new Stable Isotope Mass Spectrometry Laboratory. (EOS)

Sonke Johnsen, Assistant Professor of Biology; B.A., Mathematics, Swarthmore College; Ph.D., Biology, University of North Carolina at Chapel Hill
E-mail: sjohnsen@duke.edu

Dr. Johnsen’s research interests are comparative physiology of marine organisms focusing on optical adaptations to a pelagic existence, including topics such as transparency, cryptic coloration, bioluminescence, ultraviolet protection and vision and orientation and navigation. (CSSP)

Prasad Kasibhatla, Associate Professor of Environmental Chemistry; B.S., Chemical Engineering, University of Bombay; M.S., Ph.D., Chemical Engineering, University of Kentucky
E-mail: psk9@duke.edu

Dr. Kasibhatla’s research is focused on the development of a fundamental and quantitative understanding of the factors that determine the chemical composition of the atmosphere. He is particularly interested in delineating natural and anthropogenic impacts on the chemical composition of the atmosphere, and in exploring the potential for these impacts to affect natural ecosystems. His research involves the use of numerical models in conjunction with remote and *in situ* measurements of atmospheric composition. (ESP)

Gabriel Katul, Professor of Hydrology; B.E., Civil Engineering, American University of Beirut; M.S., Civil Engineering, Oregon State University, Ph.D., Civil Engineering, University of California, Davis
E-mail: gaby@duke.edu
Dr. Katul’s work is focused on developing an understanding of the cycling of water, carbon and energy within the soil-plant-atmosphere continuum. His approach is based on the application of fluid mechanics to quantify the net exchange of carbon dioxide, water, heat and momentum between ecosystems and the atmosphere. His work spans from below the root zone in the soil to the lower layers of the atmospheric boundary layer. While studies of this domain include the traditional disciplines of surface hydrology, terrestrial ecology and boundary layer meteorology, the basic principles of fluid mechanics provide the integration across this natural continuum and thus the most logical basis for developing a comprehensive, robust theory in land-atmosphere interaction research. (ESP)

*Richard Kay, Professor of Biological Anthropology and Anatomy and of Geology; B.S., Anthropology and Zoology, University of Michigan; M. Phil., Ph.D., Geology and Geophysics, Yale University
E-mail: rich_kay@baa.mc.duke.edu
Dr. Kay’s current research interests center on the evolutionary history of the primates. He is especially interested in further documenting the fossil history of neotropical monkeys, whose history is poorly known. Another focus of his research has been the use of quantitative methods to understand the dietary adaptations of the teeth of living primates. Dr. Kay is chairman of Duke’s Department of Biological Anthropology and Anatomy. (EOS)

William W. Kirby-Smith, Associate Professor of the Practice of Marine Ecology; B.A., Biology, University of the South; Ph.D., Zoology, Duke University
E-mail: wwks@duke.edu
Dr. Kirby-Smith’s interests in marine ecology are broadly based. His current research interests are in applied ecology, especially the restoration of aquatic systems (e.g. marshes, agricultural ditches, storm water drainage systems) at the freshwater/saltwater interface and in the ecology of fecal coliform bacteria as they impact management of shellfish resources. In the past, his research projects have involved studies of community ecology in aquatic systems extending from the interface between rivers and estuaries to the edge of the continental shelf. He has a number of collaborative projects focused upon improving estuarine water quality. (CSSP)

Emily M. Klein, Lee Hill Snowden Professor of Geology; B.A., English, Barnard College; M.S., Ph.D., Geology, Columbia University
E-mail: ek4@duke.edu
Dr. Klein’s research focuses on the geochemistry of oceanic basalts, using diverse tools of major, trace and isotopic analyses. The goals of her research are to understand the processes that lead to the creation of the ocean crust, including the physical and chemical characteristics of the sub-ridge mantle. Through these studies, Dr. Klein examines how the Earth evolves chemically through geologic time. Her research involves sea-going expeditions to sample and map the ocean floor. (EOS)

Randall A. Kramer, Professor of Resource and Environmental Economics; B.A., Economics, University of North Carolina at Chapel Hill; M.E., Economics, North Carolina State University; Ph.D., Agricultural Economics, University of California, Davis
E-mail: kramer@duke.edu
Dr. Kramer’s research has focused on ecosystem valuation, water resource economics and the economics of biodiversity and natural resource management in developing countries. Current projects in Indonesia focus on biodiversity economics, such as the effects of human population growth and migration on the sustainable use of coastal resources and the examination of how public and community-based fisheries management affects economic activity. Another set of studies is focused on the economics of protected areas in
Indonesia, with an emphasis on nature-based tourism, agricultural and forest extraction in buffer zones and watershed protection benefits. In North Carolina, Dr. Kramer’s work includes studies investigating public attitudes toward water quality protection and the economic and ecological criteria for selecting sites for wetlands restoration. (ESP, CSSP)

Seth W. Kullman, Assistant Research Professor; B.A., Cell and Molecular Biology, Sonoma State University; Ph.D., Pharmacology and Toxicology, University of California, Davis

E-mail: swkull@duke.edu

Dr. Kullman’s research is focused on molecular toxicology with an emphasis on the biochemical and molecular mechanisms of cellular response to environmental pollutants. He is particularly interested in understanding mechanisms governing induction of drug metabolizing enzymes, carcinogenesis and differential gene expression in aquatic organisms. A current focus is on how steroid hormones and environmental toxicants regulate gene expression. The goal of these studies is to develop a mechanistic understanding of how environmental pollutants influence gene regulation and to develop aquatic exposure assessment tools. A second research focus addresses mechanisms associated with induction/repression of drug metabolizing enzymes in aquatic vertebrates. Lastly, Dr. Kullman is interested in disruption/stimulation of signaling targets governing cell growth and differentiation in relation to endocrine disruption and carcinogenesis. (ESP, CSSP)

Michael Lavine, Professor of Statistics and Decision Sciences and Professor of the Environment; B.S., Mathematics, Beloit College; M.S., Mathematics, Dartmouth College; Ph.D., Statistics, University of Minnesota

Email: michael@stat.duke.edu

Dr. Lavine currently applies statistical analysis to large data sets derived from studies of oceanography and seismology. In addition, he serves as a statistical consultant to many ecological and environmental scientists throughout the Nicholas School. (ESP)

Michael Lenox, Associate Professor of Business and Environmental Policy; B.S., Systems Engineering, University of Virginia; M.S., Systems Engineering, University of Virginia; Ph.D., Technology and Policy, Massachusetts Institute of Technology

E-mail: mlenox@duke.edu

Professor Lenox’s research is at the interface of business strategy and public policy. His work draws upon emerging scholarship on the institutional, or non-market, strategies of firms and explores the prospects for industry self-regulation of its environmental impacts — both the incentives firms have to self-regulate and the institutions created by firms and policy makers to facilitate self-regulation. (ESP)

Edward D. Levin, Professor of Psychiatry and Behavioral Sciences, Duke University Medical Center; B.A., Psychology, University of Rochester; M.S., Psychology, Ph.D., Environmental Toxicology, University of Wisconsin–Madison

E-mail: edlevin@duke.edu

Dr. Levin’s research interests concern neurobehavioral toxicology and neurobehavioral pharmacology. He is particularly concerned with drug and toxicant effects on cognitive function. He has characterized the cognitive deficits from exposure to lead, PCBs, cocaine, nicotine, the pesticide chlorpyrifos and the marine toxin Pfiesteria piscicida. He and his collaborators have been working with rat, mouse and zebrafish models of toxicant-induced neurocognitive deficits to determine the mechanisms of these impairments and therapeutic treatments to reverse them. He also has appointments in the Department of Pharmacology and Cancer Biology, the Comprehensive Cancer Center and the Duke University Integrated Toxicology Program. (ESP)
Elwood Linney, Professor of Microbiology and of Environment; B.S., Engineering Physics, University of Illinois; M.S., Biophysics, Michigan State University; Ph.D., Molecular Biology, University of California, San Diego

E-mail: elwood.linney@duke.edu

Dr. Linney focuses on using zebrafish embryonic models for investigating the effects of environmental toxicants. His laboratory produces and studies transgenic, fluorescent zebrafish as biosensors for environmental insult. In addition, his group is using microarray techniques for identifying genes that are affected by environmental toxicants. (ESP, CSSP)

Daniel A. Livingstone, James B. Duke Professor of Biology Emeritus and Research Professor of Geology; B.Sc., M.Sc., Dalhousie University; Ph.D., Yale University

E-mail: livingst@duke.edu

Dr. Livingstone has spent more than 50 years in field research to reconstruct past climates from the pollen and chemical characteristics of lake sediments, focusing his attention on arctic and temperate North America and on sub-Saharan Africa. He is broadly interested in how biogeochemical phenomena have responded to changes in Earth’s climate and to human impacts upon the vegetation and land surface. (EOS)

M. Susan Lozier, Professor of Physical Oceanography and Bass Fellow; B.S., Chemical Engineering, Purdue University; M.S., Chemical Engineering, Ph.D., Physical Oceanography, University of Washington

E-mail: s.lozier@duke.edu

Dr. Lozier’s research lies in the field of physical oceanography with an emphasis on evaluation of the ocean as a reservoir for climate signals. By understanding the rapidity and extent to which climatic anomalies spread from their source region, she aims to determine the effectiveness of the deep ocean as a climatic reservoir for heat. A particular focus is on answering how climatic signals are transmitted throughout the global ocean, especially the North Atlantic basin. Dr. Lozier also studies cross-frontal mixing mechanisms in the ocean. Currently, she is studying the dynamics of shelfbreak flow in an effort to understand how properties such as heat, sediment and nutrients are transported from the shelf to the open ocean. (EOS, CSSP)

Lynn A. Maguire, Professor of the Practice of Environmental Management and Director of Professional Studies; A.B., Biology, Harvard University; M.S., Resource Ecology, University of Michigan; Ph.D., Ecology (Wildlife Science), Utah State University

E-mail: lmaguire@duke.edu

Dr. Maguire uses methods from decision analysis, environmental conflict resolution and social psychology to study environmental decision making. She focuses on collaborative decision processes in which both public and stakeholder values must be considered along with technical analysis to determine management strategies. These studies evaluate both the substance of environmental decisions—how well the resulting management actions reflect public values and available science—and the process—how well the mechanisms used to involve the public achieve social justice goals. Dr. Maguire and her students have applied these approaches to collaborative decision processes for public land management and for water quality management in North Carolina and elsewhere. (ESP)

Peter E. Malin, Professor of Seismology and of Civil and Environmental Engineering; B.S., Geophysics, M.S., Marine Geophysics, Stanford University; Ph.D., Geophysics, Princeton University

E-mail: malin@duke.edu

Dr. Malin’s interests include seismic wave propagation, tectonics and environmental geology. His current focus is on the San Andreas fault in central California, the East African
Rift Valley in Kenya, and the volcanic island of Montserrat in the Caribbean. Since seismic waves are inseparable from the geology in which they originate and travel, his research has become increasingly interdisciplinary, emphasizing the application of structural and mechanical models to seismic observations. Current projects include the Downhole Seismic Observatory Project in Mammoth Lakes in Long Valley, CA, the San Andreas Fault Observatory at Depth (SAFOD), in Parkfield, CA, and the seismological study of the Montserrat volcanic system. (EOS)

David McClay, Professor of Biology; B.S., Zoology, Pennsylvania State University; M.S., Zoology, University of Vermont; Ph.D., Zoology, University of North Carolina at Chapel Hill
E-mail: dmcclay@duke.edu
Dr. McClay studies the events of morphogenesis that mold the embryo at gastrulation. As the embryo establishes three germ layers and organizes the basic body plan, cells rearrange in highly predictable ways. Dr. McClay studies the mechanisms by which cells are specified during cleavage to become mesoderm or endoderm, the mechanisms employed by cells to rearrange during gastrulation and the function of several specific proteins in the morphogenetic process. (CSSP)

Margaret McKeen, Associate Professor of Political Science and Environment, B.A., Political Science and Asian Studies, University of California, Berkeley; M.A., Japanese Studies, Harvard University; Ph.D., Political Science, University of California, Berkeley
E-mail: mamckeke@duke.edu
Dr. McKeen’s current research is aimed at learning when and where common property regimes may be used to enhance environmental efficiency and under what conditions governments become willing to devolve property rights onto communities and individual citizens. Her initial interests in environmental issues focused on Japan’s political response to serious pollution problems. She then turned to a consideration of environmental problems as collective action dilemmas and of environmental resources as common-pool goods subject to problems of underprovision and depletion. Her work on the Japanese experience at managing forest commons led to a broader interest in the relationship between property rights and environmental outcomes in both developing and developed worlds, in both past and present. (ESP)

Miguel A. Medina Jr., Professor of Civil and Environmental Engineering and of Environment; B.S., M.S., Civil Engineering, University of Alabama; Ph.D., Water Resources and Environmental Engineering Sciences, University of Florida
E-mail: miguel.medina@duke.edu
Dr. Medina’s research interests focus on water resources, hydrologic and water quality mathematical modeling and integration of contaminant transportation prediction models within a decision-analysis framework for risk assessment. (ESP)

Joel N. Meyer, Assistant Professor of Environmental Molecular Toxicology; B.A., Environmental Studies and Peace and Conflict Studies, Juniata College; Ph.D., Environmental Toxicology, Duke University.
E-mail: joel.meyer@duke.edu
Dr. Meyer studies the effects of genotoxic agents on human and wildlife health. He is interested in understanding the mechanisms by which environmental agents cause DNA damage, the molecular processes that organisms employ to protect prevent and repair DNA damage, and genetic differences that may lead to increased or decreased sensitivity to DNA damage. Mitochondrial DNA damage and repair are a particular focus. He studies DNA repair and other responses to DNA damage via PCR-based analysis of DNA damage and...
repair, gene expression and systems biology approaches, and organismal-level responses. (ESP)

Marie Lynn Miranda, Associate Research Professor; A.B., Mathematics and Economics, Duke University; M.A., Ph.D., Economics, Harvard University
E-mail: mmiranda@duke.edu

Dr. Miranda’s primary research is in resource and environmental economics, environmental health sciences and environmental justice, with an emphasis on interdisciplinary, policy-oriented perspectives. She holds a deep interest in children’s special vulnerability to environmental toxicants. She has developed courses and conducted research on issues of environmental health with a particular emphasis on reproductive and developmental toxicants and childhood lead exposure. Her most recent work uses Geographic Information Systems to develop predictive risk exposure models for children’s environmental health, including lead-based paint, allergen and asthma triggers and fire risks. Dr. Miranda serves as the Director of the Children’s Environmental Health Initiative (CEHI) within the Nicholas School. (ESP)

A. Brad Murray, Associate Professor of Geomorphology and Coastal Processes; B.A., Journalism, B.I.S., General Science, M.S., Physics, Ph.D., Geology, University of Minnesota
E-mail: abmurray@duke.edu

Dr. Murray is interested in earth surface processes and patterns, focusing on rivers and desert, arctic and alpine geomorphology. His recent efforts have focused on coastal and nearshore processes. The nearshore environment is a spatially extended system that exhibits complex, dynamic spatial patterns, including the arrangement of bars and channels, waves and often an array of alongshore and cross-shore currents. He approaches such systems with the perspective and techniques developed in the study of nonlinear dynamics and complex systems, looking for possibly simple, large-scale interactions that could explain complex behaviors. He uses relatively simple, cellular-automata models to test such hypotheses, applying the methods to beach and surf-zone problems as well as offshore currents and shoreline features. (EOS, CSSP)

Michael K. Orbach, Professor of the Practice of Marine Affairs and Policy; B.A., Economics, University of California, Irvine; M.A., Ph.D., Cultural Anthropology, University of California, San Diego
E-mail: mko@duke.edu

Dr. Orbach has performed research on and been involved in coastal and marine policy on all coasts of the United States and in Mexico, Central America, the Caribbean, Alaska and the Pacific, and has published widely on social science and policy in coastal and marine environments. Among his publications are *Hunters, Seamen and Entrepreneurs: The Tuna Seinermen of San Diego* (University of California Press, 1977), *U.S. Marine Policy and the Ocean Ethos* (Marine Technology Society Journal, 1982), *North Carolina and the Sea: An Ocean Policy Analysis* (with D. Moffitt et al., North Carolina Department of Administration, 1985), and “A Fishery in Transition: The Impact of Urbanization on Florida’s Spiny Lobster Fishery” (with J. Johnson, City and Society, 1991). (CSSP, ESP)

Ram Oren, Professor of Ecology; B.S., Forest Resource Management, Humboldt State University; M.S., Forest Ecology, Ph.D., Physiological Ecology, Oregon State University
E-mail: ramoren@duke.edu

Dr. Oren’s research quantifies the components of water flux in forest ecosystems and the influence of certain biotic and abiotic factors on water flux. Climate variability, including
elevated atmospheric carbon dioxide, affects the patterns and amounts of water used by forest ecosystems, and their spatial distributions. Using a local mass balance approach and detailed measurements of water flux and driving variables in the soil, plants and atmosphere, Dr. Oren evaluates the likely responses of different forest ecosystems to environmental change. He also works to quantify the carbon and water balance in forests under current atmospheric CO₂ concentration and projected future concentration, and to evaluate the effect of soil fertility on carbon sequestration and water yield in pine forests. (ESP)

Charles Barry Osmond, Research Professor; BSc, MSc Botany, University of New England, Australia; PhD Botany, University of Adelaide, Australia.
Barry.Osmond@anu.edu.au
Barry Osmond studies ecophysiological aspects of photosynthesis, especially metabolism of succulent plants and mechanisms of light stress. He currently uses non-invasive methods at the leaf level that have been adapted for remote sensing of photoprotection and mitigation of photoinactivation in canopies of terrestrial ecosystems. He has broad interests in biogeochemistry, ecology and marine science. (ESP)

Sari Palmroth, Assistant Research Professor; M.Sc., Silviculture, Ph.D., Forest Ecology, University of Helsinki, Finland
E-mail: sari.palmroth@duke.edu
Dr. Palmroth's research interests are in the general area of forest carbon dynamics with emphasis on physical-physiological modeling of canopy radiative transfer and photosynthesis. Her recent work also deals with empirical modeling of ecosystem respiration, where she is examining gas exchange in leaves, stems, and soils. (ESP)

*Jeffrey Peirce, Associate Professor of Civil and Environmental Engineering; B.E.S., Engineering Mechanics, The Johns Hopkins University; M.S., Ph.D., Civil and Environmental Engineering, University of Wisconsin–Madison
E-mail: peirce@duke.edu
Dr. Peirce studies the design, construction and use of experimental devices to observe, measure and model the movement of fluids, non-water liquids and gases through porous materials in natural and engineered systems. His current research focuses on the production and transformation of gases in soil and their transport to the lower troposphere. (ESP)

Orrin H. Pilkey, James B. Duke Professor of Geology Emeritus and Research Professor; B.S., Geology, Washington State College; M.S., Geology, University of Montana; Ph.D., Geology, Florida State University
E-mail: opilkey@duke.edu
Dr. Pilkey's expertise lies in basic and applied coastal geology, focusing primarily on barrier island coasts. He is director of the Program for the Study of Developed Shorelines. The program’s research focuses on beach replenishment and other forms of shoreline stabilization, evaluation of the validity of mathematical models of beach behavior, hazard risk mapping on barrier islands, sedimentary processes on shorefaces, mitigation of hurricane property damage on barriers and principles of barrier island evolution in Colombia, South America. (EOS)

Stuart L. Pimm, Doris Duke Professor of Conservation Ecology; B.A., Zoology, Oxford University; Ph.D., Ecology, New Mexico State University
E-mail: StuartPimm@aol.com
Dr. Pimm is committed to the study of the scientific issues behind the global loss of biological diversity, including the reasons why species become extinct, how fast they do so, the global patterns of habitat loss and species extinction, the role of introduced species in causing extinction and, importantly, the management consequences of this research.
Current work includes studies of endangered species and ecosystem restoration in the Florida Everglades and setting priorities for protected areas in the Atlantic Coast forest of Brazil, one of the world’s hotspots for threatened species. Dr. Pimm has written more than 150 scientific papers and four books including his recent global assessment of biodiversity’s future, *The World According to Pimm: A Scientist Audits the Earth.* (ESP, CSSP)

Amilcare Porporato, Associate Professor of Civil and Environmental Engineering, M.S. Polytechnic of Turin, Italy; Ph.D. Polytechnic of Milan, Italy.

Email: amilcare@duke.edu

Dr Porporato studies the links between the terrestrial water cycles and ecosystems. His work combines theoretical modeling, using methods from nonlinear dynamical systems and stochastic processes, to field investigations, especially at the Duke forest FACE experiment. Dr Porporato’s other interests include nonlinear analysis of hydrologic time series and turbulence. (ESP)

Lincoln F. Pratson, Associate Professor of Sedimentary Geology; B.S., Geology, Trinity University; M.S., Oceanography, University of Rhode Island; M.Ph., Ph.D., Geology, Columbia University

E-mail: lincoln.pratson@duke.edu

Dr. Pratson studies how sedimentary processes shape continental margins. Specific research interests include the dynamics of both current- and gravity-driven sediment transport, submarine canyon formation and seafloor evolution, the causes and consequences of submarine slope failure and the interplay between marine sedimentation and tectonics. He conducts this research using a variety of methods ranging from seafloor mapping using multibeam bathymetry, side-scan sonar imagery and shallow cores, to sequence stratigraphy based on seismic reflection profiles and borehole data constrained in some instances by gravity measurements. Dr. Pratson also uses numerical and experimental models of sedimentary processes for testing ideas about their dynamics and predicting their contribution to and imprint on the morphology and stratigraphy of continental margins. (EOS, CSSP)

Song S. Qian, Associate Research Professor; B.S., Environmental Engineering, Tsinghua University; M.S., Environmental Systems Engineering, Nanjing University; M.S., Statistics, Duke University; Ph.D., Environmental Science, Duke University

E-mail: song@duke.edu

Dr. Qian's major focus is environmental and ecological modeling. His current work includes watershed nutrient loading modeling, integrated watershed–estuary water quality/ecological modeling using Bayesnet, quantification of ecological thresholds, multilevel/hierarchical modeling in ecological studies, and statistical modeling of marine mammal habitat and density. (ESP)

Joseph S. Ramus, Research Professor of Biological Oceanography; B.A., Ph.D., Botany, University of California, Berkeley

E-mail: jramus@duke.edu

Dr. Ramus’s research is centered on the ecological response of a large estuary, the Pamlico Sound system, to watershed-scale natural and anthropogenic perturbations. The information will be used in predictive modeling to guide policy and management actions such as river basin nutrient management plans. A recent collaborative project, FerryMon, is a time- and space-intensive measurement of water quality parameters, designed to monitor status and trends analysis for the Sound. It utilizes fully automated sonde and grab sampler systems aboard Pamlico Sound ferries. A high priority is the coupling of the FerryMon program to coastal remote sensing. (CSSP)
Andrew J. Read, Rachel Carson Associate Professor of Marine Conservation Biology; B.Sc., M.Sc., Ph.D., Zoology, University of Guelph
E-mail: aread@duke.edu

Dr. Read’s research interests are in the ecology and conservation biology of marine mammals. His work focuses on how dolphins and porpoises obtain prey in a three-dimensional environment and on the life history consequences of energy allocation. Much of his current research documents the direct and indirect effects of human activities on populations of marine mammals and attempts to find solutions to such conflicts, especially between marine mammals and commercial fisheries. This research involves field work, experimentation and modeling. He is particularly interested in the development and application of new conservation tools to resolve such conflicts. (CSSP)

Kenneth H. Reckhow, Professor of Water Resources and Chair of the Division of Environmental Science and Policy; B.S., Engineering Physics, Cornell University; M.S., Ph.D., Environmental Science and Engineering, Harvard University
E-mail: reckhow@duke.edu

Dr. Reckhow’s research activities have concerned the development, evaluation and application of models and other assessment techniques for the management of water quality. Recent work has focused on the assessment of nonpoint source pollution on surface water quality and the development of “Total Maximum Daily Loads” (TMDLs). For example, a current project involves the modeling and assessment of allowable nitrogen loads to the Neuse River Estuary in North Carolina in order to achieve compliance with the chlorophyll standard. Dr. Reckhow was recently chair of the National Academy of Sciences Committee assessing the scientific basis of the EPA TMDL program. (ESP)

James F. Reynolds, Professor of Environmental Science and Policy and of Biology; B.S., Botany, Northern Arizona University; M.S., Botany, University of Wyoming; Ph.D., Biology, New Mexico State University
E-mail: james.f.reynolds@duke.edu

Dr. Reynolds participates in various international research efforts on land degradation in arid and semiarid regions of the world. He established ARID (Assessment, Research, and Integration of Desertification), a research initiative on global desertification that emphasizes the interdependencies of natural and human systems in elucidating mechanisms of desertification. In addition, Dr. Reynolds is conducting basic ecological research on desertification, including field and laboratory experiments and applying the Patch Arid Lands Simulator (PALS) ecosystem model to explore the effects of climate variability on carbon, nitrogen, and water dynamics in arid ecosystems. The National Phytotron at Duke continues to house Dr. Reynolds’ research on the effects of elevated CO2 and climate change on plants and ecosystems. (ESP)

Curtis J. Richardson, Professor of Resource Ecology; B.S., Biology, State University of New York at Cortland; Ph.D., Ecology, University of Tennessee
E-mail: curtr@duke.edu

Dr. Richardson’s research interests in applied ecology are centered on long-term ecosystem response to large-scale perturbations such as acid rain, toxic materials, trace metals, flooding and nutrient additions. His main interests are in phosphorus nutrient dynamics in wetlands, the effects of environmental stress on plant metabolism and growth response, and wetland restoration. As director of the Duke University Wetland Center since its inception in 1989, Dr. Richardson has directed research efforts to understand the ecological basis for a phosphorus threshold in the Everglades and sustaining ecosystem structure and function. (ESP, CSSP)
Daniel D. Richter Jr., Professor of Soils and Forest Ecology; B.A., Philosophy, Lehigh University; Ph.D., Forest Soils, Duke University
E-mail: drichter@duke.edu
Dr. Richter’s research centers on applying principles of soil and ecosystem sciences to the management of forests, soils and watersheds. Recent research has focused on Ultisols and Inceptisols in the southeastern United States, boreal forest Gelisols in interior Alaska, and a wide range of soils in the humid tropics of Indonesia and Costa Rica. Dr. Richter’s research centers on biogeochemical change in soil over three time scales: decades, in which contemporary ecosystems and their management affect ongoing dynamics of soil; centuries, in which past land-use practices affect soil properties and processes; and millennia, in which ecosystem processes form soils. Dr. Richter studies three main issues: carbon sequestration, soil-nutrient regeneration, and soil-ecosystem acidification. (ESP)

Dan Rittschof, Professor of Zoology; B.S., Ph.D., Zoology, University of Michigan
E-mail: ritt@duke.edu
Dr. Rittschof’s research focuses on ecology with emphasis on the chemical, behavioral and spatial aspects of the discipline. Presently, he has two areas of focus: the ecology of local macroinvertebrates and the prevention of fouling of marine vessels. Dr. Rittschof is funded in both areas with grants to work on the spatial ecology of blue crabs in the basin drained by the Beaufort Inlet and to develop new antifouling technology. The most extensive of these is a three-year antifouling program in Singapore that started in early January 2002. This program has the goal of using medical drugs as environmentally benign antifoulants. (CSSP)

James Salzman, Nicholas Institute Professor of Environmental Law and Policy; B.A., History, Yale College; M.S., Engineering Sciences, Harvard University; J.D., Law, Harvard University
E-mail: salzman@law.duke.edu
Professor Salzman's major research focus is on the institutions and laws related to the provision of ecosystem services and the creation of markets for ecosystem services. His research also involves challenges in managing the global commons and the management of resources with strong public goods components, such as drinking water. Analytical methods that he employs include legal, public policy, and economic analysis. (ESP)

William H. Schlesinger, James B. Duke Professor of Biogeochemistry and Dean of the Nicholas School of Earth and Ocean Sciences; A.B., Biology, Dartmouth College; Ph.D., Ecology and Systematics, Cornell University
E-mail: schlesin@duke.edu
Dr. Schlesinger’s research focus is on the global biogeochemical cycles of the chemical elements, especially on the role of soils in the global carbon cycle. He has also worked extensively in desert ecosystems and their response to global change, which often leads to the degradation of soils and regional desertification. His past work has taken him to diverse habitats, ranging from Okefenokee Swamp in southern Georgia to the Mojave Desert of California. He is the author or coauthor of more than 180 scientific papers and the widely-adopted textbook *Biogeochemistry: An analysis of global change* (Academic Press, 2nd ed. 1997). He was elected to the National Academy of Sciences in 2003. (EOS, ESP)

Martin D. Smith, Assistant Professor of Environmental Economics; B.A., Public Policy, Stanford University; Ph.D., Agricultural and Resource Economics, University of California, Davis
E-mail: marsmith@duke.edu
Dr. Smith’s research focuses on spatial issues in natural resource use and management.
He specializes in applied econometrics and bioeconomic modeling. His current research projects include evaluating marine reserves as a commercial fishery management tool, studying the spatial and intertemporal behavior of renewable resource harvesters, modeling the impacts of commercial fishing on endangered species through predator-prey interactions, analyzing private agricultural land use decisions in federally managed wetlands and identifying transition dynamics in the organic farming industry. (ESP, CSSP)

Heather Stapleton, Assistant Professor of Environmental Chemistry; B.S., Marine Biology and Marine Chemistry, Southampton College; M.S., Ph.D., Environmental Chemistry, University of Maryland

E-mail: heather.stapleton@duke.edu

Dr. Stapleton’s investigates the fate, transport and metabolism of halogenated organic contaminants in the environment. Her specific interests focus on species-specific differences in the metabolism of brominated flame retardants in aquatic organisms. Analytical methods employed in Dr. Stapleton’s laboratory include gas chromatography, liquid chromatography and mass spectrometry. (ESP)

Jennifer Swenson, Assistant Professor of the Practice of Geospatial Analysis; B.A., Geography and International Relations, U.C. Santa Barbara; M.A., Geography, San Diego State University; Ph.D., Forest Ecology, Oregon State University.

E-Mail: jennifer.swenson@duke.edu

Dr. Swenson is interested in modeling spatial patterns of species and ecosystems, species diversity, and their relationship with functional ecological factors. She has worked in the South American tropics using GIS and remote sensing technology to create information for conservation applications. (ESP)

John W. Terborgh, Research Professor; A.B., Biology, Harvard College; A.M., Biology, Ph.D., Plant Physiology, Harvard University

E-mail: manu@duke.edu

Dr. Terborgh is co-director of the Center for Tropical Conservation at Duke University. He is a member of the National Academy of Sciences, and for the past 35 years he has been actively involved in tropical ecology and conservation issues. An authority on avian and mammalian ecology in neotropical forests, Dr. Terborgh has published numerous articles and books on conservation themes. Since 1973 he has operated a field station in Peru’s Manu National Park where he has overseen the research of more than 100 investigators. In April 1996, he was awarded the National Academy of Sciences’s Daniel Giraud Elliot medal for his research and for his book *Diversity and the Tropical Rainforest*. (ESP)

Wayne Thomann, Assistant Research Professor; B.S., M.S., Microbiology, Florida Atlantic University; Ph.D., Biohazard Science, University of North Carolina at Chapel Hill

E-mail: thoma010@mc.duke.edu

Dr. Thomann’s interests are indoor air quality, bioaerosols and asthma, safety management and chemical and medical waste management. Thomann is the lead instructor for two courses: Survey of Occupational Health & Safety and Survey of Environmental Health & Safety. He is a research collaborator and co–principal investigator with Children’s Environmental Health Initiative (CEHI) and he is director of research for many graduate students, not only for the Nicholas School but throughout Duke. (ESP)

Chris Timmins, Associate Professor of Economics; B.S.F.S., International Economics, Georgetown University; Ph.D., Economics

Email: timmins@econ.duke.edu

Dr. Timmins focuses on environmental and development economics, with recent projects supported by Resources for the Future, the World Bank, the National Science
Foundation, and the Inter-American Development Bank. His current research examines the role of equilibrium models of sorting behavior in describing preferences for non-marketed environmental commodities, identifying agglomeration and congestion effects in urban economies, and describing the spatial variation in multidimensional measures of poverty in Brazil.

Dean L. Urban, Professor of Landscape Ecology; B.A., Botany and Zoology, M.A., Wildlife Ecology, Southern Illinois University at Carbondale; Ph.D., Ecology, University of Tennessee
E-mail: deanu@duke.edu

Dr. Urban’s interest in landscape ecology focuses on the agents and implications of pattern in forested landscapes. Increasingly, his research is centered on what has been termed theoretical applied ecology, developing new analytic approaches to applications of immediate practical concern, such as conservation planning. A hallmark of Dr. Urban’s lab is the integration of field studies, spatial analysis and simulation modeling in environmental problem solving. (ESP)

Cindy Lee Van Dover, Director, Marine Laboratory; B.Sc., Environmental Science, Rutgers University; M.A., Ecology, University of California, Los Angeles; Ph.D., Biological Oceanography, Massachusetts Institute of Technology and Woods Hole Oceanographic Institute Joint Program
E-mail: cindy.vandover@duke.edu

Dr. Van Dover is a deep-sea biologist and explorer with a primary focus on the ecology of chemosynthetic communities at hydrothermal vents and methane hydrate seeps. Her interests include biogeography, biodiversity, community structure, and the processes that control these attributes within deep-sea ecosystems, and studies of biological adaptations to extreme environments. (CSSP)

Avner Vengosh, Associate Professor of Geochemistry; B.S., Geology, Hebrew University of Jerusalem; M.S., Geology, Hebrew University of Jerusalem; Ph.D., Environmental Geochemistry, Australian National University, Canberra, Australia.
E-mail: vengosh@duke.edu

Dr. Vengosh’s major focus is on the quality of water resources, understanding flow paths, ground- and surface-water interactions, mechanisms of water salinization and contamination, and their societal impact. Current research includes natural contaminants and radioactivity in water resources and their effects on human health, salinization and sustainability of water resources in the Middle East, and anthropogenic modifications of the chemical and isotopic compositions of water resources. His work involves field and laboratory studies. Analytical methods that he employs include aquatic geochemistry, major and trace elements, and stable (boron, sulfur, nitrogen, oxygen, hydrogen) and radiogenic (lead, strontium, uranium, radium, radon) isotopic geochemistry. (EOS)

Erika Weinthal, Associate Professor of Environmental Policy; B.A., Government and Environmental Studies, Oberlin College; M.A., M.Phil., Ph.D., Political Science, Columbia University
E-mail: weinthal@duke.edu <mailto:weinthal@duke.edu>

Dr. Weinthal’s research focuses on global environmental politics, the political economy of the resource curse, regional cooperation, and state-society relations. She has carried out field work in Central Asia, the Caucasus, the Russian Federation, and the Middle East. She is the author of /State Making and Environmental Cooperation: Linking Domestic and International Politics in Central Asia/ (Cambridge, Mass.: MIT Press, 2002). (ESP)
Jonathan B. Wiener, Professor of Law and of Environmental Policy; A.B., Economics, Harvard College; J.D., Harvard Law School
E-mail: jonathan.wiener@duke.edu
Mr. Wiener studies the interplay of science, economics and law in addressing environmental and human health risks. His policy work and writing have addressed topics including climate change, forest conservation, risk and risk-risk tradeoffs, biotechnology, mass torts and incentives in regulation and litigation. Before coming to Duke in 1994, Mr. Wiener worked on U.S. and international environmental policy at the White House Council of Economic Advisers and Office of Science and Technology Policy, and at the United States Department of Justice, in both the first Bush and Clinton administrations. (ESP)

Robert L. Wolpert, Professor of Statistics and Decision Sciences and of the Environment; A.B., Mathematics, Cornell University; Ph.D., Mathematics, Princeton University
E-mail: wolpert@stat.duke.edu
Dr. Wolpert works in collaboration with ecologists and other environmental scientists in developing and using statistical, mathematical and computational models to help improve our understanding and management of complex environmental systems. His specific areas of interest include spatial statistics, stochastic processes, nonparametric Bayesian analysis and meta-analysis (the synthesis of evidence from multiple diverse sources). He works with epidemiologists in England in developing nonexchangeable hierarchical Bayesian models for synthesizing evidence about the health effects of environmental pollutants. A new research area involves remote sensing of biomass and assessment of biodiversity. (ESP)

Justin P. Wright, Assistant Research Professor of Biology; B.A., Biology, University Williams College; Ph.D., Ecology and Evolutionary Biology, Cornell University
E-mail: justin.wright@duke.edu
Dr. Wright’s research focuses on understanding the causes and consequences of patterns of biological diversity across the planet. He is particularly interested in two broad questions: 1) How does the modification of the environment by organisms affect community structure and ecosystem function? and 2) what aspects of biodiversity matter most in the regulation of ecosystem function? While much of his research has focused on wetland plant communities, he has worked in systems ranging from tropical streams to desert shrublands to answer the questions that interest him. His research program combines observational and experimental approaches with modeling to develop and test hypotheses and build towards synthetic ecological theory. (ESP)

Extended Faculty

ABBREVIATIONS

ESP – Division of Environmental Sciences and Policy
EOS – Division of Earth and Ocean Sciences
CSSP – Division of Coastal Systems Science and Policy

Steven Anderson, Adjunct Professor; Ph.D., North Carolina State University.
Dr. Anderson serves as President and CEO of the Forest History Society, based in Durham, NC. He has broad experience in leading programs for extension forestry, wildlife and aquaculture and has provided leadership to numerous educational programs. (ESP)

Marcia Angle, Visiting Professor; M.D., Duke University.
Dr. Angle studies issues in international health and global epidemiology, with a special focus on reproductive health and family planning in the developing world. She also studies
the strength of the epidemiologic evidence linking various environmental exposures to human disease. (ESP)

Nick Bates, Adjunct Professor; Ph.D., University of Southampton, U.K.

Dr. Bates is a senior research scientist at the Bermuda Biological Station. His primary interest is studying the oceanic carbon cycle with a view towards better understanding global climate change. (CSSP)

Kathi K. Beratan, Research Scientist; Ph.D., University of Southern California.

Dr. Beratan’s research focuses on sustainability science, the study of interactions between human and natural systems. She uses remote sensing and GIS approaches coupled with rigorous fieldwork to characterize interactions between watershed and ecosystem processes and human use patterns. (ESP)

Barbara A. Block, Adjunct Professor; Ph.D., Duke University.

Dr. Block is a Professor at Stanford University, where she examines how large pelagic fishes utilize the marine environment. Block and her colleagues investigate the ecology, physiology and genetics of tunas, sharks and billfishes, using an interdisciplinary approach, combining biology, oceanography, engineering and computational informatics. (CSSP)

Fred Kofi Boadu, Divisional Associate; Ph.D., Georgia Institute of Technology.

A faculty member in the Pratt School of Engineering, Dr. Boadu focuses on applications of basic principles and methods of geophysics to solve fundamental problems related to the geosciences, especially hydrology, using theoretical and phenomenological models for laboratory and field studies. (EOS)

Nora Bynum, Adjunct Assistant Professor; Ph.D., Yale University.

Dr. Bynum is associated with the Center for Biodiversity and Conservation (CBC) of the American Museum of Natural History (AMNH) in New York. She is director of the Network of Conservation Educators and Practitioners (NCEP), which produces and disseminates teaching resources for university faculty on topics relevant to biodiversity conservation. (ESP)

Fei Chai, Adjunct Assistant Professor; Ph.D., Duke University.

Dr. Chai is assistant professor of oceanography at the School of Marine Sciences, University of Maine. Currently, he investigates how mesoscale physical processes contribute to oceanic new production and whether this eddy-enhanced biological production significantly affects the global carbon cycle. (CSSP)

Yi Chao, Adjunct Assistant Professor; Ph.D., Princeton University.

Dr. Chao’s research aims to improve our understanding of the general circulation of the ocean and to determine its role in the Earth system and global climate. He is a member of the technical staff at the Jet Propulsion Laboratory of the California Institute of Technology. (CSSP)

Kathryn Coates, Adjunct Associate Professor; Ph.D., University of Victoria.

Dr. Coates is an associate research scientist at the Bermuda Biological Station. She is investigates the diversity and evolution of marine invertebrates. (CSSP)

Michael Coyne, Research Scientist; Ph.D., Texas A&M University.

Coyne's expertise lies in sea turtle biology and conservation, use of satellite telemetry and remote sensing to understand the ecology of marine protected species, and developing tools to facilitate data sharing and distribution. (CSSP)

Kevin Craig, Assistant Research Scientist; Ph.D., Duke University.

Dr. Craig’s research addresses the effects of human-induced environmental stress on fish populations in nearshore coastal and estuarine systems, including including nutrient
loading and associated hypoxia. (CSSP)

Humberto Diaz, Adjunct Professor; Ph.D., Duke University.
Retiring from a 30-year career at the Instituto Venezolano de Investigaciones Científicas (IVIC) in Venezuela, Dr. Diaz continues to investigate coastal benthic communities. He works at the interface of developmental biology, sensory biology, behavioral biology and ecology, using adult, juvenile and larval stages of dominant crustaceans as model systems. (CSSP)

Samantha de Putron, Adjunct Assistant Professor; Ph.D., University of Wales, Swansea.
Dr de Putron is an Assistant Research Scientist at the Bermuda Biological Station, where she is an instructor for graduate and undergraduate classes in coral reef ecology, marine ecology and marine biology. Her research focus is invertebrate reproductive ecology, specifically the vulnerability of reproduction to natural and anthropogenic change in environmental factors. (CSSP)

Gary Dwyer, Research Scientist; Ph.D., Duke University.
Dr. Dwyer is a sedimentary geologist focused on paleoclimatology and paleoceanography using proxy indicators from the sedimentary record. His primary research interest is documenting the history of climate and ocean variability of the last 20,000 years. (EOS)

Karen Lind Eckert, Assistant Research Scientist; Ph.D., University of Georgia.
Dr. Eckert has been active for more than two decades in the fields of sea turtle research and international conservation policy. She is currently Executive Director of the Wider Caribbean Sea Turtle Conservation Network (WIDECAST, Inc.), an international scientific network based at the Duke University Marine Laboratory. (CSSP)

Scott A. Eckert, Assistant Research Scientist; Ph.D., University of Georgia.
Dr. Eckert has been active for more than two decades in the field of pelagic marine vertebrate research and conservation, focusing largely on sea turtles and, more recently, whale sharks. He is a pioneer in the use of electronic technologies to study the at-sea behavior and activities of marine turtles and other large pelagic vertebrates. (CSSP)

David W. Engel, Adjunct Professor; Ph.D., North Carolina State University.
Dr. Engel is Professor Emeritus, National Marine Fisheries, NOAA, Beaufort Laboratory. His research examines the influence of the quality and quantity of habitat on fishery populations and individual organisms, involving studies of large systems, e.g., the Gulf of Mexico. He is also interested in factors that affect the accumulation of mercury in fish and shellfish and in the widespread mercury contamination in the coastal plains of southeastern states. (CSSP)

David J. Erickson III, Adjunct Professor; Ph.D., University of Rhode Island.
Based at Oak Ridge National Laboratory, Dr. Erickson’s expertise lies in the development and application of numerical biogeochemistry models that employ satellite data, high performance computing, experimental results and extensive theoretical constructs to simulate and predict climate change potentialities. (EOS)

John Fay, Research Associate/Instruction; M.S. University of Michigan.
Mr. Fay is part of the Geospatial Analysis Program at the Nicholas School, where he helps teach courses in Introductory GIS, Advanced GIS, and GIS for Conservation Management. Mr. Fay also collaborates in research projects that apply spatial analysis techniques to issues of biological conservation and the delivery of ecosystem services. (ESP)
Mark Feinglos, Divisional Associate; M.D., McGill University.
Dr. Feinglos is a Professor of Medicine at the Duke Medical Center, where he specializes in endocrinology. His secondary expertise lies in the area of mineralogy, especially descriptive mineralogy and mineral curation. He has described six new mineral species, including dukeite. The mineral feinglosite was named in his honor. (EOS)

Dale A. Gillette, Adjunct Professor; Ph.D., University of Michigan.
Dr. Gillette, physical scientist at the NOAA Air Resources Laboratories in Research Triangle Park, is interested in eolian processes and has concentrated on mechanisms of wind erosion and applications to geology and ecology. He is an authority on many of the mechanisms of wind erosion. (EOS)

Matthew Godfrey, Adjunct Assistant Professor; Ph.D., University of Toronto.
Dr. Godfrey is coordinator of the Sea Turtle Project, a project of the North Carolina Wildlife Resources Commission. He is also involved in research, education, regulatory activities and conservation policy. (CSSP)

Gary S. Hartshorn, Adjunct Professor of Tropical Ecology; Ph.D., Washington University.
Dr. Hartshorn’s expertise lies in tropical forest ecology, conservation and management. He is President and CEO of the World Forestry Center in Portland, Oregon. (ESP)

Marshall Hayes, Assistant Research Scientist; Ph.D., Duke University.
Dr. Hayes investigates the consequences of environmental change on interactions among bacteria and marine animals. He is also affiliated with the Department of Plant Pathology at Cornell University (Ithaca, NY), where he studies the molecular mechanisms that enable bacteria to cause disease in crop plants. (CSSP)

Nicholas Hayman, Assistant Research Scientist; Ph.D., University of Washington.
Dr. Hayman conducts geological investigations of fault zones in both the oceanic and continental crusts. (EOS)

Richard Henkins, Adjunct Professor; Ph.D., Yale University.
Dr. Henkins examines the effects of various chemical substances, especially nitric oxide, on hemoglobin function in marine environments. (CSSP)

Selina Heppell, Adjunct Assistant Professor; Ph.D., Duke University.
Dr. Heppell is an assistant professor in the Department of Fisheries and Wildlife at Oregon State University. Her research involves landscape-level predictors of biodiversity and exotic species interactions, specifically amphibian population models and wetlands restoration in Oregon. (CSSP)

Eric Holm, Adjunct Assistant Professor; Ph.D., Duke University.
Dr. Holm is an ecologist with the Carderock Division of the Naval Surface Warfare Center in Maryland. His work focuses on the settlement and adhesion of marine fouling organisms, and the transport of aquatic exotic species in ballast water and as a component of ship hull fouling. (CSSP)

Thomas P. Holmes, Adjunct Professor; Ph.D., Ohio Wesleyan University.
Dr. Holmes is a research forester with the USDA Forest Service’s Economics of Forest Protection and Management work unit at Research Triangle Park, NC. His research focuses on the application of nonmarket valuation methods to problems of forest ecosystem protection and conservation in the United States and Brazil. (ESP)

K. David Hyrenbach, Assistant Research Scientist; Ph.D., Scripps Institution of Oceanography.
Dr. Hyrenbach’s research focuses on characterizing the oceanic habitats of pelagic
vertebrates (seabirds, turtles, cetaceans and tunas), and the physical mechanisms (upwelling and convergence) that define predictable areas of enhanced biological activity in pelagic systems. (CSSP)

Gary H. Isaksen, Adjunct Professor; Ph.D., Bergen University, Norway.
Dr. Isaksen is the Knowledge Capitalization Manager with ExxonMobil’s Upstream Geoscience Companies in Houston, Texas. He has 25 years of experience in oil and gas research, exploration and production. Dr. Isaksen is a co-organizer of the Nicholas School "Energy and Environment" field-trip program. (EOS)

Richard Kwok, Adjunct Assistant Professor; Ph.D., University of North Carolina.
Dr. Kwok is a Research Epidemiologist at RTI International, an independent, non-profit research organization based in Research Triangle Park, NC. His research interests include cardiovascular, reproductive, and cancer health outcomes in relation to occupational and environmental exposures. Dr. Kwok has a special interest in children’s health and is currently collaborating with investigators from around the world on a childhood cancer study. He has additional experience working with geographic information systems and spatial statistics, cancer registries, and socioeconomic status issues associated with the U.S. Census. (ESP)

Steven T. Lindley, Adjunct Assistant Professor; Ph.D., Duke University.
Dr. Lindley is an ecologist in NOAA’s National Marine Fisheries Service at the Southeast Fisheries Science Center, Tiburon Laboratory, California. His research interests focus on ecosystem and population ecology, numerical modeling, and application of stable isotopes as tracers of ecological processes. (CSSP)

Michael Lomas, Adjunct Associate Professor; Ph.D., University of Maryland.
Dr. Lomas is an assistant research scientist at the Bermuda Biological Station. His area of expertise is phytoplankton physiology and ecology, where we works on harmful algal bloom species, marine nitrogen cycling, and chemical techniques for seawater analysis. (CSSP)

Elizabeth Losos, Adjunct Professor; Ph.D., Princeton University.
Dr. Losos is the President and CEO of the Organization for Tropical Studies (OTS), a consortium of 65 universities and research institutions whose mission is to provide leadership in research, education, and the responsible use of natural resources in the tropics. OTS promotes research at its three biological research stations in Costa Rica. The organization also offers field-based courses for undergraduates, graduate studies, and environmental professionals in Costa Rica, Peru, Brazil, Mexico, and South Africa. OTS is headquartered at Duke University. (ESP)

Karen Magnus, Adjunct Associate Professor; Ph.D., The Johns Hopkins University.
Dr. Magnus’ interests are in crystal structure and function. Her laboratory has made unique and significant contributions to improve our understanding of the function of hemocyanin. She studies the chemical basis of reversible oxygen binding in dicopper systems, and her laboratory has created an atomic model for the basis of cooperative ligand binding behavior in hierarchical physiological macromolecular assemblies. (CSSP)

Carol Mansfield, Adjunct Associate Professor; Ph.D., University of Maryland.
Dr. Mansfield is a senior economist at RTI International. Her research focuses on environment, health and natural resource management, with an emphasis on modeling and measuring the benefits from improved environmental quality. Her work is funded primarily from the Environmental Protection Agency, the Centers for Disease Control and Prevention, and the National Park Service. (ESP)

Sandra McBride, Research Scientist; Ph.D., Stanford University.
Dr. McBride provides statistical consulting and analysis at the National Institute of Environmental Health Sciences. Working with Dr. Jonathan Freedman, she examines the regulatory processes controlling an organism’s response to toxic concentrations of transition metals. Dr. McBride focuses on applications of statistics to environmental problems, and she also has ongoing collaborations with the National Exposure Research Laboratory at USEPA to model health effects from exposure to particulate air pollution. (ESP)

Patricia McClellan-Green, Adjunct Assistant Professor; Ph.D., North Carolina State University.

Dr. McClellan-Green’s research focuses on the study of natural and human toxins in the marine environment and their effects on the metabolic activities of marine organisms. Her current research includes an examination of the molecular and biochemical pathways involved in endocrine disruption, the mechanisms of PAH and PCB mediated gene regulation in fish and other organisms, the isolation and characterization of various cytochrome P450s in marine species, and the effects of marine dinoflagellate toxins on cellular metabolism. (CSSP)

Suzanne McMaster, Adjunct Associate Professor; Ph.D., University of Oklahoma Health Sciences Center.

Dr. McMaster, who is employed by the Environmental Protection Agency in Research Triangle Park, is broadly interested in problems of environmental risk assessment and specifically in children’s health issues. Her research interests include neurodevelopmental effects of pre- and post-natal environmental exposures to pesticides and other chemicals. (ESP)

D. Evan Mercer, Adjunct Professor; Ph.D., Duke University.

Dr. Mercer is a research economist with the USDA Forest Service’s Southern Research Station at Research Triangle Park, NC. His current research examines the economics of agroforestry, nonmarket valuation, rural development and the effects of government policies, market factors and societal values on the management and protection of tropical forest resources and properties of lake sediments. (ESP)

Ellen M. Mihaich, Adjunct Professor; Ph.D., Duke University.

Dr. Mihaich is a senior environmental toxicologist with Rhodia Inc., an international chemical company. Her research focuses on sound, scientific environmental risk assessment, identifying data needs and methods of interpretation of both exposure and effects data. Recently, she has been involved in environmental endocrine issues and the risk assessment of chemicals that can mimic natural hormones. (ESP)

Bruce F. Molnia, Adjunct Professor; Ph.D.; University of South Carolina.

As a member of the U.S. Geological Survey, Dr. Molnia has conducted glacial, marine, remote sensing and coastal research in equatorial, temperate, sub-polar and polar regions for more than 35 years. Dr. Molnia’s current research interests are in glacial processes, impacts of changing climate, fiord and shallow-water marine geology, remote sensing, and glacial-marine sedimentation. (EOS)

Norman Myers, Adjunct Professor; Ph.D., University of California.

Dr. Myers is an independent scientist working on issues of global environment and development. He is a Fellow of the School of the Environment and Business School at Oxford University. (ESP)

Elliott Norse, Adjunct Professor; Ph.D., University of Southern California.

From his position as President of the Marine Conservation Biology Institute in Bellevue Washington, Dr. Norse studies a wide variety of issues of marine conservation, benthic
degradation and overfishing. (CSSP)

Eva Oberdoester, Associate Research Scientist; Ph.D., Duke University.

Dr. Oberdoester’s research focuses on the types of cell-signaling pathways used by invertebrate peptide and steroid hormones, organism fitness after exposure to toxicants, and the mechanism of nanoparticle toxicity in aquatic systems. (CSSP)

Lydia Olander, Research Scientist; Ph.D., Stanford University.

Dr. Olander is the Associate Director of the Nicholas Institute for Environmental Policy Solutions. She works on a range of issues including national energy and transportation policy and their linkages with climate change and climate policy. She is also helping to build a new program on ecosystem services at the Institute. Previously, she worked on Environmental policy in the U.S. Senate and research in ecosystem nutrient cycling, ecosystem restoration, and remote sensing of land use change. (ESP)

Subhrendu Pattanayak, Adjunct Associate Professor; Ph.D., Duke University.

Dr. Pattanayak measures resource and environmental values and models economic behavior under environmental constraints for analysis of environmental policy. His recent research has focused on non-industrial private forestry, urban land use dynamics, benefits of safe drinking water and benefits transfer methodology. (ESP)

Sam Pearsall, Adjunct Assistant Professor; Ph.D., University of Hawaii.

Dr. Pearsall examines selection, design, and adaptive management of landscape-level sites for ecosystem conservation. His current research focuses on modeling and managing the riverian and riparian ecosystems of the Roanoke River in North Carolina, and in new projects on the Santee River in South Carolina and in the large karst system of the Duck River watershed in Tennessee. (ESP)

Greg Piniak, Adjunct Assistant Professor; Ph.D., Duke University.

Dr. Piniak is a research ecologist with the National Oceanic and Atmospheric Administration's Center for Coastal Fisheries and Habitat Research in Beaufort, NC, where he works in coral reef ecology and conservation. (CSSP)

Joanna Pitt, Adjunct Assistant Professor; Ph.D., James Cook University, Australia.

Dr. Pitt works within the Marine Environmental Program at the Bermuda Biological Station. She monitors Bermuda's coral reef ecosystems, focusing on coral community composition, the incidence of coral diseases and coral bleaching, and other threats to coral reef health. Other research interests include fish and fisheries ecology and marine protected areas. Dr. Pitt teaches in Duke's Beaufort-2-Bermuda program. (CSSP)

Gerald Plumley, Adjunct Professor; Ph.D., University of Georgia.

Dr. Plumley is associated with the Bermuda Institute of Ocean Sciences (BIOS), where he also serves as Education Director and Deputy Director of the Institute. The Plumley lab pursues two overlapping objectives related to proteomics and genomics of marine microorganisms. One program seeks to understand the structure, function and evolution of the photosynthetic apparatus, with an emphasis on pigment-binding proteins. The second research area is in the field of harmful algal blooms. (CSSP)

Chantal Reid, Lecturer; Ph.D., Duke University.

Dr. Reid studies how plants grow in changing environments, with emphasis on effect of rising CO2 and other air pollutants. She combines her research and teaching interests, engaging students in research through ecology courses and independent study. (ESP)

Erika Sasser, Adjunct Assistant Professor; Ph.D., Duke University.

Dr. Sasser works as a policy advisor in the United States Environmental Protection Agency (EPA). Currently, she is part of the Health and Environmental Impacts Division
of the Office of Air Quality Planning and Standards, located in Research Triangle Park, NC, where she works on domestic and international air pollution policy. She has a background in natural resource policy (especially forestry and land use) and a strong research interest in private voluntary regimes, especially as related to forest certification. (ESP)

Kathryn Saterson, Adjunct Associate Professor; Ph.D., University of North Carolina at Chapel Hill.

A staff member at the Environmental Protection Agency, Dr. Saterson has more than 20 years of experience analyzing, designing and managing programs and policies to mitigate human impacts on the environment. She uses lessons from field projects and local conservation efforts to improve environmental policy and practice. (ESP)

David Schwartz MD, Adjunct Professor; M.D., University of California, San Diego.

Director, National Institute of Environmental Health Sciences and the National Toxicology Program.

Dr. Schwartz oversees the Institute's comprehensive research portfolio of basic and applied research to reduce the burden of human diseases that are triggered by the environment. As the Director of the National Toxicology Program, Dr. Schwartz also oversees its interagency program established to test chemicals and other agents of public health concern. (ESP)

Peter Neil Sedwick, Adjunct Associate Professor; Ph.D., University of Hawaii at Manoa.

Dr. Sedwick is an Associate Research Scientist at the Bermuda Biological Station, where he studies the marine and atmospheric geochemistry of trace metals, particularly iron, and their role in regulating marine primary production, ecosystem structure and carbon cycling. Current research projects are based in the Bermuda region of the North Atlantic, and in the Ross Sea, Antarctica. (CSSP)

Eylon Shalev, Research Scientist; Ph.D., Yale University.

Dr. Shalev’s research interests include geothermal energy, volcanic and tectonics seismicity, and three-dimensional inversion. His research involves installation of borehole instruments at depth and the deployment of dense surface seismic arrays. (EOS)

Sally Shaumann, Adjunct Professor; M.S., University of Michigan.

Dr. Shaumann is Professor Emerita of Landscape Architecture at the University of Washington, Seattle. Her interests are in environmental management of landscapes and restoration ecology—most recently, studies of how residential landowners treat the river corridors that adjoin their property. (ESP)

Joseph Stanislaw, Adjunct Professor; Ph.D., University of Edinburgh.

Dr. Stanislaw is founder of the advisory firm the JAStanislaw Group, LLC, specializing in strategic thinking and investment in energy and technology. Previously, Stanislaw was one of three founders of Cambridge Energy Research Associates, where he served as president and chief executive officer. (EOS)

William G. Sunda, Adjunct Assistant Professor; Ph.D., Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program.

Dr. Sunda conducts research on the interactions between trace metal chemistry in marine systems and phytoplankton dynamics. (CSSP)

Henry Trapido-Rosenthal, Adjunct Associate Professor; Ph.D., University of California.

Dr. Trapido-Rosenthal heads the molecular biology program at the Bermuda Biological Station, where he and the members of his laboratory use molecular techniques to pursue
questions of marine pharmaceuticals, marine ecotoxicology, coral reef symbioses, biodiversity of marine ecosystems, and chemosensory neurobiology. (CSSP)

John J. Vandenberg, Adjunct Professor; Ph.D., Duke University.
Dr. Vandenberg is director of EPA’s research program on airborne particulate matter. His interests include the health effects of air pollutants, atmospheric sciences, and the interface of science and air quality management. (ESP)

Jan Vymazal, Adjunct Associate Professor; Ph.D., Prague Institute of Chemical Technology.
Dr. Vymazal, a private consultant on wetlands in the Czech Republic, has studied many aspects of nutrient loading, eutrophication and constructed wetlands, and serves as a collaborator on Nicholas School programs in the Florida Everglades (ESP)

David N. Wear, Adjunct Professor; Ph.D., University of Montana.
Dr. Wear’s current research concerns the economics of ecosystem management, the design of forestry policies, and the regional assessment of forest production and investment. He is project leader for the economics of forest protection and management with the USDA Forest Service, Southeastern Forest Experiment Station, Research Triangle Park, NC. (ESP)

James B. Wood, Adjunct Assistant Professor; Ph.D., Dalhousie University.
Dr. Wood is a marine invertebrate zoologist specializing in the life history, physiology and behavior of cephalopods (octopus, squid, cuttlefish). He teaches Marine Invertebrate Zoology in the B2B program at Bermuda. (CSSP)

Faculty Emeriti

Richard T. Barber, Ph.D., Harvey W. Smith Professor of Biological Oceanography, Emeritus

John D. Costlow, Ph.D., Professor Emeritus

George F. Dutrow, Ph.D., Professor Emeritus

John W. Gutknecht, Ph.D., Professor Emeritus

S. Duncan Heron, Ph.D., Professor Emeritus of Geology

Kenneth R. Knoerr, Ph.D., Professor Emeritus of Environmental Meteorology and Hydrology

Ronald D. Perkins, Ph.D., Professor Emeritus of Earth Science

Orrin Pilkey, Ph.D., James B. Duke Professor of Geology Emeritus

William J. Stambaugh, Ph.D., Professor Emeritus
Courses of Instruction
Course offerings are subject to change. The student should consult the current university course schedule at http://www.siss.duke.edu/schedule for listings of courses to be offered each semester.

Courses taught in Durham

Environment (ENVIRON)

25. Introduction to Environmental Sciences and Policy. An introduction to the study of environmental sciences and policy through exploration of basic environmental principles in the life, physical, and social sciences. Emphasis on understanding how the atmosphere, hydrosphere, lithosphere, cryosphere, and biosphere function, and how these spheres interact with human consumption, production, and technological patterns and processes. Field trips to a local site as well as the Duke University Marine Laboratory. Instructors: Christensen or Meyer. 1 unit.

49S. First-Year Seminar. Topics vary each semester offered. Instructor: Staff. 1 unit.

60. Science and Policy of Natural Castastrophes. In this interdisciplinary course students will conduct a life cycle analysis of a natural disaster. Invited experts will discuss meteorologic, hydrologic and geologic factors that cause disasters; explore how societies plan for and/or respond to the immediate and long-term physical, social, emotional and spiritual issues associated with survival; and present case studies of response, recovery and reconstruction efforts. Students will attend the lecture component of the course and complete on-line quizzes to demonstrate understanding of the material presented. Additionally, they will prepare on individual paper (~ 10 pages) on a relevant topic and one group paper, the results of which will be presented to the class. Instructor: Schaad. 1 unit. C-L: see Civil Engineering 60; also C-L: Public Policy Studies 60

61. Natural Catastrophes: Rebuilding from Ruins. Research Service Learning Gateway course where students will conduct a life cycle analysis of natural disasters. Invited experts will discuss meteorologic, hydrologic and geologic factors that cause disasters; explore how societies plan and/or respond to the immediate and long-term physical, social, emotional and spiritual issues associated with survival; and present case studies of response, recovery and reconstruction efforts. Students will attend the lecture component of the course and complete on-line quizzes to demonstrate understanding of the material presented. For the service learning experience, students will carry out response activities over Spring Break in an area ravaged by a natural disaster. They will keep a journal (audio and written) of their activities, write a brief synopsis (4-5 pages), and make a group oral presentation of their findings following their return. They will also submit a hypothetical research proposal for a project which might stem from the course and their experiences. Instructor: Schaad. 1 unit. C-L: see Civil Engineering 61; also C-L: Public Policy Studies 61

65. Microeconomics for Environmental Science and Policy. Standard principles of microeconomics course with non-calculus-based applications to environmental and resource economics. Topics include supply and demand functions, consumer and producer surplus and deadweight loss, opportunity cost, marginal analysis, time discounting, market functions, and market failures. Applications of microeconomics to environmental science and policy including cost-benefit analysis, cost-effectiveness analysis, and environmental and natural resource management. Instructor: Staff. 1 unit.

99FCS. Topics in Environment. Topics vary semester to semester. Only open to students in the Focus program. Consent of Instructor required. Instructor: Staff. 1 unit.
100. Duke-Administered Study Abroad: Advanced Special Topics in Environmental Sciences and Policy. Topics differ by section. Instructor: Staff. 1 unit.

101. Integrating Environmental Sciences and Policy. Interaction between the natural and the social systems as they relate to the environment. Focus on ecological and earth system cycles, processes, and fundamental relationships. The environmental impact of human-induced change at the local, regional, and global levels. The role of technology and the policy process in determining how environmental problems evolve and are addressed. Use of ethical analysis to evaluate environmental tradeoffs. Use of case studies to integrate multiple disciplinary perspectives on environmental problems and to address issues of environmental justice. Not open to first year students. Prerequisite: Environment 25 or consent of instructor. Instructor: Miranda. 1 unit.

103D. Conserving the Variety of Life on Earth. An overview of biological diversity, its patterns, and the current extinction crisis. Historical and theoretical foundations of conservation, from human values and law to criteria and frameworks for setting conservation priorities; island biogeography theory, landscape ecology, and socioeconomic considerations in reserve design; management of endangered species in the wild and in captivity; managing protected areas for long term viability of populations; the role of the landscape matrix around protected areas; and techniques for conserving biological diversity in semi-wild productive ecosystems such as forests. Instructor: Pimm. 1 unit.

110L. Ecology. Physical, chemical, and biological processes that determine the distribution and abundance of plants and animals, emphasizing physiological responses, population dynamics, species interaction, biogeography, nutrient cycling, and energy flow through food webs. Laboratory includes fieldwork. Prerequisites: Biology 25L and Mathematics 31. Instructor: Reid. 1 unit. C-L: Biology 110L

126S. Field Methods in Earth and Environmental Sciences. Introduction to basic field methods used in the earth and environmental sciences. Field investigations focus on topics such as groundwater and surface water movements, soil chemistry and identification, topographic and geologic mapping, the atmosphere/soil interface, and plant identification and distributions. Design of a field investigation, collection of data to address a specific goal, and interpretation and reporting of the results. Emphasis on learning to report field results in the format of scientific publications. Visits to five local field sites. Open only to juniors and seniors. Instructor: Klein. 1 unit. C-L: see Earth and Ocean Sciences 126S

129. Environmental Science and Policy of the Tropics. Investigates major environmental issues facing tropical nations using concepts from the natural and physical sciences, the social sciences, and resource management. Topics include: climatic and biogeographical patterns, trends in human population size and demography, historical and contemporary issues in resource use and conservation, and sociological and ethical concerns regarding the source and distribution of economic wealth. (Given in Costa Rica.) Prerequisite: introductory biology. Instructor: Shelly. 1 unit. C-L: International Comparative Studies 103C

130. Energy and the Environment. Overview of the challenges confronting humanity as a consequence of our reliance on energy. Challenges include dwindling supplies, rising demand and environmental degradation. Realistic responses require an understanding of the complexity of the energy system, including energy resources, uses, and impacts, in the context of social, political and economic imperatives. Lectures will be augmented by presentations from guest speakers from industry, government and non-profit organizations. Instructor: Pratson. 1 unit. C-L: Earth and Ocean Sciences 130
131. World Trade In Energy and Mineral Resources. Exploration of the physical, economic and geopolitical flow of energy and mineral resources around the world. Topics include examination of economically important energy and mineral resources, their uses, geologic/geographic distribution, and influence on the economic and political organization of and interaction between nations. The trade of energy and mineral resources explored in light of current demand, remaining supplies, technical and geopolitical accessibility, refining and distribution systems, and pricing, as well as the environmental impacts and future challenges facing continued use of these resources. Prerequisite: Earth and Ocean Sciences 11 or 12 or Environment 25. Instructor: Pratson. 1 unit. C-L: Earth and Ocean Sciences 131

149. United States Environmental Policy. An overview of the major environmental legislation in the United States. Topics include: air and water pollution, hazardous waste, agriculture, wildlife, and institutions. Political, economic, ethical, and scientific analysis. Consent of instructor required. Instructor: Gallagher or staff. 1 unit. C-L: Public Policy Studies 149

159. Fundamentals of GIS and Geospatial Analysis. Fundamental aspects of geographic information systems and satellite remote sensing for environmental applications. Concepts of geographic data development, cartography, image processing, and spatial analysis. Prerequisite: an introductory statistics course. Consent of director of undergraduate studies required. Instructor: Halpin. 1 unit. C-L: Earth and Ocean Sciences 159

160. Environmental Chemistry and Toxicology. An overview of the fate and effects of chemicals in the environment. Topics include chemical characterization of pollutants, chemistry of natural waters, soil sediment chemistry, atmospheric chemistry, transfers between and transformations within environmental compartments, toxicokinetics, cellular metabolism, biological levels of organization, and approaches for assessing chemical hazards. Incorporates case studies focused on human health and ecosystem protection. Prerequisite: Biology 25L; Chemistry 21L and 22L; Chemistry 151L; Mathematics 31. Instructor: Stapleton and DiGiulio. 1 unit.

163. Economics of the Environment. Role of economic methods in evaluating the use and abuse of environmental resources. Focus on characteristics of resources that influence efficient allocation decisions. Current case studies used to develop relevant microeconomics such as natural resource damage assessment, auctions for pollution permits, trade, and the environment. Prerequisite: Econ 55D and Statistics 101, 103, 104, 112, 113,114 or Math 135 or Math 136. Instructor: Smith or Timmins. 1 unit. C-L: see Economics 163

179. Introduction to Atmospheric Chemistry. Integrated scientific background for the impact of humans on the natural environment. Topics covered include greenhouse gases and climate, local and regional ozone pollution, long-range pollution transport, acid rain, atmospheric particulate matter pollution, and stratospheric ozone depletion. Pre-requisites: Chemistry 21 and 22. Instructor: Kasibhatla. 1 unit.

181. Special Topics in Environmental Sciences and Policy. Content to be determined each semester. Consent of instructor required. Instructor: Staff. 1 unit.

182. Special Topics in Environmental Sciences and Policy. Content to be determined each semester. Consent of instructor required. Instructor: Staff. 1 unit.

185. Senior Capstone Course. Interdisciplinary and in-depth study of contemporary environmental issues. Content to be determined each semester. Consent of Instructor required. Instructor: Staff. 1 unit.
191. Research Independent Study. Individual research in a field of special interest, under the supervision of a faculty member, the central goal of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Instructor: Staff. 1 unit.

191A. Research Independent Study. See Environment 191. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Half course. Instructor: Staff. 0.5 units.

192. Independent Study. Individual readings course or other non-research-based independent course under the supervision of a faculty member, resulting in an academic product. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Instructor: Staff. 1 unit.

192A. Independent Study. See Environment 192. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Instructor: Staff. 0.5 units.

197. South African Ecosystems and Diversity. Conceptual themes in ecology emphasizing savannas; also consideration of fynbos, highveld, podocarp forests, coastal and intertidal zones. Topics include climate and geology of South Africa; roles of fire, drought, human presence, invasive species, and herbivores in shaping ecosystems; top-down and bottom-up control of mammalian herbivores; plant pollination and seed dispersal; role of rivers in defining savanna characteristics; origin and maintenance of biodiversity; vertebrate social systems; major research programs in Kruger National Park (taught in Kruger National Park, South Africa). Prerequisite: Biology 25L or equivalent. Instructor: McClearn. 1 unit. C-L: see Biology 137

200. Integrated Case Studies. A group of two to four students may plan and conduct integrated research projects on a special topic, not normally covered by courses or seminars. A request to establish such a project should be addressed to the case studies director with an outline of the objectives and methods of study and a plan for presentation of the results to the school. Each participant's adviser will designate the units to be earned (up to six units) and evaluate and grade the work. Instructor: Staff. Variable credit.

201. Forest Resources Field Skills. Introduction to field techniques commonly used to quantify and sample forest resources: trees, soils, water, and animal resources. Dendrology, vegetation sampling, soil mapping, river flow estimation, field water quality sampling, surveying, and use of compass. Instructor: Richter. 2 units.

203. Conservation Biology: Theory and Practice. An overview of biological diversity, its patterns, and the current extinction crisis. Historical and theoretical foundations of conservation, from human values and law to criteria and frameworks for setting conservation priorities; island biogeography theory, landscape ecology, and socioeconomic considerations in reserve design; management of endangered species in the wild and in captivity; managing protected areas for long term viability of populations; the role of the landscape matrix around protected areas; and techniques for conserving biological diversity in semiwild productive ecosystems like forests. Three field trips. Prerequisite: one ecology course or consent of instructor. Instructor: Pimm. 3 units.

205L. Ecological Management of Forest Systems (Silviculture). The aim of the course is to equip future resource managers and environmental consultants with knowledge allowing them to propose lower impact practices to individuals and organizations who need to balance wood production with maintenance of environmental quality. Underlying principles of growth, from seed to mature trees, and stand dynamics are explored. Various
alternative methods of manipulating growth, stand structure and development, ranging from little to large perturbations of forest systems, are presented and assessed in terms of their effect on resource quality. Includes laboratory. Instructor: Oren. 4 units.

206. Forest Vegetation Sampling. Theory and application of forest vegetation sampling. Direct and indirect estimation methods that range from timber cruising and inventory to sampling for species composition. Laboratory applications in Duke Forest to include over- and understory vegetation. Instructor: Staff. 3 units.

207. Forest Health Management. Non-lab version of Environment 207L. Instructor: Doggett. 3 units.

207L. Forest Health Management. Fundamentals of forest fire management, entomology and plant pathology (including air pollution and chemical damage) related to understanding their impacts on forest productivity and forest management. Regional case examples and complexes are evaluated in terms of pest-population, forest-stand dynamics; economic and societal constraints; treatment strategies; monitoring systems; and benefit-cost analysis. Approach seeks to develop predictive capabilities in long range pest management and decision making. Field oriented lab focuses on diagnostics and impact analysis. Instructor: Doggett. 4 units.

210. Applied Data Analysis for Environmental Sciences. Graphical and exploratory data analysis; modeling, estimation, and hypothesis testing; analysis of variance; random effect models; nested models; regression and scatterplot smoothing; resampling and randomization methods. Concepts and tools involved in data analysis. Special emphasis on examples drawn from the biological and environmental sciences. Students to be involved in applied work through statistical computing using software, often S-plus, which will highlight the usefulness of exploratory methods of data analysis. Other software, such as SAS, may be introduced. Instructor: Staff. 3 units. C-L: Statistics and Decision Sciences 240

211. Energy and Environment. Overview of the challenges confronting humanity as a consequence of our reliance on energy. Challenges include dwindling supplies, rising demand and environmental degradation. Realistic responses require an understanding of the complexity of the energy system, including energy resources, uses, and impacts, in the context of social, political and economic imperatives. Lectures will be augmented by presentations from guest speakers from industry, government and non-profit organizations. Instructor: Pratson. 3 units.

212. Environmental Toxicology. Study of environmental contaminants from a broad perspective encompassing biochemical, ecological, and toxicological principles and methodologies. Discussion of sources, environmental transport and transformation phenomena, accumulation in biota and ecosystems. Impacts at various levels of organization, particularly biochemical and physiological effects. Prerequisites: organic chemistry and vertebrate physiology or consent of instructor. Instructor: Di Giulio. 3 units.

213. Forest Ecosystems. Emphasis on the processes by which forests circulate, transform, and accumulate energy and materials through interactions of biologic organisms and the forest environment. Ecosystem productivity and cycling of carbon, water, and nutrients provide the basis for lecture and laboratory. Instructor: Richter. 3 units.

214. Landscape Ecology. Emphasis on the role of spatial heterogeneity in terrestrial systems: its detection and description, agents of pattern formation, landscape dynamics and models, and the implications of heterogeneity of populations, communities, and ecosystems. Prerequisites: an intermediate-level ecology course, introductory applied statistics, and Environment 351, or consent of instructor. Instructor: Urban. 3 units.

217. Tropical Ecology. Ecosystem, community, and population ecology of tropical plants and animals with application to conservation and sustainable development. Prerequisite: a course in general ecology. Instructor: Staff. 3 units. C-L: Biology 215

221L. Soil Resources. Emphasis on soil resources as central components of terrestrial ecosystems, as rooting environments for plants, and as porous media for water. Soil physics and chemistry provide the basis for the special problems examined through the course. Laboratory emphasizes field and lab skills, interpretive and analytical. Instructor: Richter. 3 units.

230L. Weather and Climate. Overview of the science of meteorology and principles of climatology, especially as applied to problems in ecology and natural resource management. Emphasis on the processes and characteristics of weather phenomena and local and regional climates. General introduction to sources of climatic data and climatic data analysis. Includes laboratory. Instructor: Knoerr. 4 units.

231L. Models for Environmental Data. Formulation of environmental models and applications to data. Topics include physiology, population growth, species interactions, disturbance, and ecosystem dynamics. Model development, analysis, and interpretation. Discussions focus on classical and current primary literature. Lab focuses on analysis of data using R, making use of likelihood models, bootstrapping, and Bayesian approaches. Instructor: Clark. 3 units. C-L: see Biology 268L

237L. Field Botany of North Carolina's Wetlands. A survey of the flora of North Carolina's wetland habitats with emphasis on plant identification in the field. Field trips to mountain, piedmont, and coastal wetlands. Examination of all groups of plants including bryophytes, ferns, and seed plants. Wetland habitats include swamps, bogs, pocosins, and brackish sites. Information on the floristics of the southeastern United States botanical nomenclature, systematic relationships of wetland plants, and an overview of wetland
vegetation. Prerequisite: one course in plant diversity or systematics, or consent of instructor. Instructors: Shaw and Wilbur. 3 units. C-L: see Biology 242L

239. Human Health and Ecological Risk Assessment. Topics central to both health and ecological risk assessment are explored. Basic concepts of hazard identification, dose-response relationships, exposure assessment, and risk characterization and communication are discussed in the context of both human health and environmental assessment. The basis and rationale for using specific, as well as extrapolated, scientific information and expert judgment, and the strengths and weaknesses of alternative approaches, are evaluated. Applications emphasizing real cases are used to illustrate the interdisciplinary process and products of risk assessment, as well as the regulatory use of the information. Group projects emphasized. Instructors: Mihaich and McMasters. 3 units.

240. Chemical Fate of Organic Compounds. Equilibrium, kinetic, and analytical approaches applied to quantitative description of processes affecting the distribution and fate of anthropogenic and natural organic compounds in surface and groundwaters, including chemical transfers between air, water, soils/sediments, and biota; and thermochemical and photochemical transformations. The relationships between organic compound structure and environmental behavior will be emphasized. Sampling, detection, identification, and quantification of organic compounds in the environment. Prerequisites: university-level general chemistry and organic chemistry within last four years. Instructor: Stapleton. 3 units. C-L: Civil Engineering 240

242. Environmental Aquatic Chemistry. Principles of chemical equilibria and kinetics applied to quantitative chemical description of natural and engineered aquatic systems. Topics include acid/base equilibrium, the carbonate system, metal complexation, oxidation/reduction reactions, precipitation/dissolution of minerals, and surface absorption. Prerequisite: Civil and Environmental Engineering 120L or Environment 160 or equivalent. Instructor: Hsu-Kim. 3 units. C-L: see Civil Engineering 242

248. Solid Waste Engineering. Engineering design of material and energy recovery systems including traditional and advanced technologies. Sanitary landfills and incineration of solid wastes. Application of systems analysis to collection of municipal refuse. Major design project in solid waste management. Prerequisite: Civil Engineering 124L or consent of instructor. Instructor: Staff. 3 units. C-L: see Civil Engineering 248

252. Sustainability and Renewable Resource Economics. Economic theories of sustainability, contrasted with other scientific views. Focus on renewable resource economics, modeling, and management. Prerequisite: Environment 270. Instructor: Smith. 3 units.

255. Applied Regression Analysis. Linear regression using both graphical and numerical methods. Model construction, critique, and correction using graphical residual analysis. One-way and two-way analysis of variance; introduction to design of experiments. Use of a standard statistical software package. Applications and examples drawn from various

260. Western Field Trip. One-week trip to observe land management and utilization practices in the western United States. Exposure to ecological, economic, and policy issues, as well as watershed, wildlife, and land use questions. May be repeated for credit. Consent of instructor required. Instructor: Edeburn. 1 unit.

262. Forest Management Traveling Seminar. Covers current topics in the broad field of forest management. Taught as a set of coordinated field trips with expert contacts in sites in the Carolina piedmont, coastal plain, and mountains. Topics of past seminars include fiber utilization, best management practices, forest regeneration, the chip mill issue, forest-pest management, and forest preservation management. May be repeated for credit. Instructor: Richter. 1 unit.

264. Applied Differential Equations in Environmental Sciences. General calculus and analytic geometry review; numerical differentiation and integration; analytic and exact methods for first and second order ordinary differential equations (ODE); introduction to higher order linear ODE, numerical integration of ODEs and systems of ODEs; extension of Euler's method to partial differential equations (PDE) with special emphasis on parabolic PDE. Example applications include population forecasting, soil-plant-atmosphere water flow models, ground water and heat flow in soils, and diffusion of gases from leaves into the atmosphere. Prerequisite: Mathematics 31 or equivalent or consent of instructor. Instructor: Katul. 2 units.

265. Geospatial Analysis for Coastal and Marine Management. Application course focusing on spatial analysis and image processing applications to support coastal and marine management. Covers benthic habitat mapping, spatial analysis of marine animal movements, habitat modeling, optimization of marine protected areas. Requires fundamental knowledge of geospatial analysis theory and analysis tools. Consent of instructor required. Prerequisite: Environment 259. Instructor: Halpin. 4 units.

266. Ecology of Southern Appalachian Forests. Field trips to various forest ecosystems in the southern Appalachian Mountains. Species identification, major forest types, field sampling, and history of effects of human activities. Consent of instructor required. Instructor: Richter. 1 unit.

270. Resource and Environmental Economics. The application of economic concepts to private- and public-sector decision making concerning natural and environmental resources. Intertemporal resource allocation, benefit-cost analysis, valuation of environmental goods and policy concepts. Prerequisite: introductory course in microeconomics. Instructor: Bennear. 3 units. C-L: Economics 270, Public Policy Studies 272
271. Economic Analysis of Resource and Environmental Policies. Case and applications oriented course examining current environmental and resource policy issues. Benefits and costs of policies related to sustaining resource productivity and maintaining environmental quality will be analyzed using economic and econometric methods. Topics include benefit-cost analysis, intergenerational equity, externalities, public goods, and property rights. Prerequisite: Environment 270 or equivalent; Economics 149 recommended. Instructor: Kramer. 3 units. C-L: Economics 272

272. Evaluation of Public Expenditures. Basic development of cost benefit analysis from alternative points of view, for example, equity debt, and economy as a whole. Techniques include: construction of cash flows, alternative investment rules, inflation adjustments, optimal timing and duration of projects, private and social pricing. Adjustments for economic distortions, foreign exchange adjustments, risk and income distribution examined in the context of present value rules. Examples and cases from both developed and developing countries. Instructor: Conrad. 3 units. C-L: Economics 272

274. Environmental Politics. Environmental policy formation and implementation in comparative perspective. Topics include interest groups, environmental movements and parties, public opinion, political systems and institutions. Case students selected from the United States and other advanced industrialized countries and the developing world. Spring. Instructor: Weinthal. 3 units. C-L: Public Policy Studies 274

275S. Protected Areas, Tourism, and Local Development. Investigates issues of establishing and managing national parks, biosphere reserves, and other protected areas in situations where local populations compete for the same resources. Tourism is considered as a possible source of negative impacts on the protected area and as a source of local economic development. Includes consideration of tourism policy, resource protection strategies, microenterprise development, sustainable agriculture, and forestry. Instructor: Healy. 3 units.

277. Professional Ethics for Environmental Practitioners. Give students training and experience in applying moral reasoning to the types of ethical problems likely to be encountered by environmental practitioners. Instructor: Maguire. 1 unit.

278. Lessons from Watershed Management in California: Seeing the Big Picture. Watershed formed by Sacramento and San Joaquin Rivers. History of competing interests and conflicts. Bay Delta Accord and coalition of federal and state agencies (CALFED) management to assure ecological integrity and water supply availability. Geography, stressors, legal claims for water, and attempts to store snowmelt in winter for dispersal throughout year. Instructor: Hinton. 3 units.

279. Introduction to Atmospheric Chemistry. A broad overview of the science of oxidant chemistry in the atmosphere. Basic physical and chemical concepts relevant to the understanding of atmospheric chemistry; several contemporary topics discussed from a process-level perspective. Topics include atmospheric structure and chemical composition; atomic structure and chemical bonds; chemical thermodynamics and kinetics; atmospheric radiation and photochemistry, tropospheric and stratospheric ozone chemistry; aqueous-phase atmospheric chemistry; atmospheric aerosols; and air quality modeling. Prerequisites: one college-level course each in chemistry and calculus. Instructor: Kasibhatla. 3 units. C-L: Civil Engineering 279

280. Social Science Surveys for Environmental Management. Social science research methods for collecting data for environmental management and policy analysis. Sampling,
survey design, focus groups, pretesting, survey implementation, coding, and data analysis. Team projects emphasize development and practice of survey skills. Prerequisite: introductory applied statistics or equivalent. Instructor: Kramer. 3 units.

281. Environmental Law. Examination of contemporary environmental law and its common law antecedents in the context of the American legal system. Objectives are to provide basic training in analyzing cases and statutes, applying knowledge in a classroom setting, and using a law library. Instructor: Heath. 3 units.

284S. Seminar in Land Use Policy. Selected topics in United States land policy. Content varies each offering, but may include regulatory innovations, management of public lands, urban growth management, and landscape protection. Term paper and class presentations required. Half or one course for undergraduates. 1 to 3 units for graduate students. Instructor: Healy. Variable credit.

287L. Geospatial Analysis for Water Resources Management. Spatial analysis and image processing applications to support water resources management: water quality, flooding, and water supply primarily at watershed scale. Topics include water resources data modeling, terrain modeling and processing, river and watershed network analysis, and geospatial modeling of hydrologic processes. Knowledge of geospatial analysis theory and analysis tools required. Prerequisite: Environment 259. Consent of instructor required. Instructor: Goodall. 4 units.

294. Water Quality Skills. Introduction to field and laboratory techniques for monitoring water quality characteristics including heat properties, BOD, flow, dissolved oxygen, nutrients, benthic invertebrates, and coliform indicators. Emphasis on technical report writing. Prerequisite: Environment 236. Instructor: Stow. 3 units.

296. Environmental Conflict Resolution. Practical techniques and scholarly underpinnings of environmental conflict resolution, including interest-based negotiation, mediation, public disputes, science-intensive disputes, and negotiation analysis. In-class time will be spent conducting negotiation role plays of increasing complexity and then debriefing them. Outside of class, students will prepare for the role plays and read background material to aid in debriefing. Students will keep a journal of their experiences. Instructor: Maguire. 2 units.

298. Special Topics. Content to be determined each semester. May be repeated. Instructor: Staff. Variable credit.

299. Independent Studies and Projects. Directed readings or research at the graduate level to meet the needs of individual students. Consent of instructor required. Units to be arranged. Instructor: Staff. Variable credit.

301. Topics in Experiential Learning for Environmental Management. Field trips, short courses, guest lectures series and other learning experiences that bring students into practice of environmental management and bring environmental managers to students. Example of topics include sustainable energy and sustainable forest practices. Main mode of instruction: face-to-face participation by students in learning experiences designed by environmental managers; some sections will also include background reading and student project work. Grading: pass/fail, with attendance at all class sessions and completion if any projects
required to pass. MEM/MF students may count up to a total of 3 credits toward 48 credits required for the degree. Registration limited to Nicholas School MEM/MF students; undergraduates and PhD students may participate on a non-credit basis if space is available. Fall and Spring. Instructor: Staff. Variable credit.

303. Principles of Environmental Modeling. Design, implementation, and interpretation of mathematical and computer models in environmental science and management. Combination of lectures, discussion sessions, and computer lab exercises. Goals of course are to develop skills: (1) to conceptualize environmental problems and (2) to design, program, implement and interpret mathematical and computer models to help solve environmental problems. Instructor: Staff. 3 units. C-L: see Biology 303

309. Wetland Restoration Ecology. Restoration of wetlands requires understanding of wetland hydrology, biogeochemical processes, decomposition, community habitat requirements and soil processes. Factors are discussed in an ecosystem context along with current restoration techniques. Course utilizes newly constructed wetlands in Duke Forest to explore wetland restoration principles. Students teamed together to develop restoration plan for a restored wetland. Final report and oral presentation required. Instructor: Richardson. 3 units.

312. Wetlands Ecology and Management. The study of bogs, fens, marshes, and swamps. Emphasis on processes within the ecosystem: biogeochemical cycling, decomposition, hydrology, and primary productivity. Ecosystem structure, the response of these systems to perturbations, and management strategies are discussed. A research project is required. Prerequisites: one course in ecology and chemistry. Instructor: Richardson. 3 units.

313. Advanced Topics in Environmental Toxicology. Discussion of current issues. Topics vary but may include chemical carcinogenesis in aquatic animals; biomarkers for exposure and sublethal stress in plants and animals; techniques for ecological hazard assessments; and means of determining population, community, and ecosystem level effects. Lectures and discussions led by instructor, guest speakers, and students. Prerequisite: Environment 212. Instructor: Di Giulio. 3 units.

314. Integrated Case Studies in Toxicology. Students are assigned topics relative to their chosen research discipline in toxicology and are asked to develop case studies to present at a roundtable workshop. Emphasis on review and analysis of toxicological problems from a holistic (multidisciplinary) viewpoint. Offered on demand. Instructor: Abou-Donia. 1 unit. C-L: Pharmacology and Cancer Biology 314

315. Focused Topics in Toxicology. A contemporary advanced toxicology research area covered with readings from the current primary literature. An integrative review of the topic prepared as a collaborative effort. Consent of instructor required. Prerequisites: Pharmacology 233 and 347. Instructor: Levin. 1 unit. C-L: Pharmacology and Cancer Biology 315

317. Topics in Tropical Ecology and Conservation. Discussion of current issues and ideas at the interface between basic and applied science. Lectures, seminars, and discussion with student participation. Prerequisite: Environment 217 or equivalent. Instructor: Terborgh. 2 units.

319. Mechanisms in Environmental Toxicology. Provides an in-depth examination of key molecular and biochemical mechanisms by which organisms defend themselves against environmental pollutants. Cellular mechanisms by which chemicals produce toxicity when the defense systems are overwhelmed will be addressed. Includes examinations of "state of the art" approaches for experimentally elucidating these phenomena. Course format will be
that of a graduate seminar, with lectures given and discussions led by the instructors, guest
speakers, and course participants. Prerequisites: one course in biochemistry and one course
in toxicology. Instructors: Di Giulio and Freedman. 3 units.

320. Ecosystem Management. Principles of environmental management in the context of
arbitrary temporal and spatial boundaries, complexity, dynamic processes, uncertainty and
varied and changing human values. Topics to include adaptive management, decision
making in the context of uncertainty, conflict resolution, strategic planning, evaluation and
accountability. Case studies will cover terrestrial, aquatic and marine ecosystems and an
array of social and institutional settings. Instructor: Christensen. 3 units.

321. Advanced Readings in Soil Science. An advanced discussion course based on
readings that concern current critical topics in the soil sciences. Readings are selected from
both basic and applied aspects of the field. Instructor: Richter. 1 unit.

326. Global Environmental Politics. Course examines how states and non-states actors
cooperate to resolved global environmental problems. Central focus is on the creation of
international environmental regimes, their implementation, and effectiveness. Case studies
include climate change, ozone depletion, water sharing and dams, fisheries, biodiversity,
forestries, oil pollution, sustainable development, environmental security, and trade and the
environment. Instructor: Weinthal. 3 units.

331. Sustainable Business Strategy. Businesses are increasingly applying strategic
management tools to incorporate consideration of sustainability into decision-making and
operations. While some businesses incorporate sustainable practices because of ethical
convictions, most businesses are motivated to do so to address pressures from stakeholders
such as regulators, shareholders, customers and neighbors and to exploit knowledge and
experience for long term competitive advantage. Students will learn how businesses develop
and implement strategies to promote sustainability by examining roles and responsibilities
of sustainable strategic managers and applying tools of strategic business management to
problems of sustainability. Permission of instructor required. Instructor: Gallagher. 3 units.

348. Seminar in Toxicology. A weekly research seminar throughout the year is required
of participants in the Toxicology Program. Students, faculty, and invited speakers present
their findings. Instructor: Levin. 1 unit. C-L: see Pharmacology and Cancer Biology 348

352. Spatial Analysis in Ecology. Techniques of spatial analysis as applied to ecological
data, including scaling techniques, pattern analysis, indices of patchiness (adjacency,
contagion), and inferential methods (cross-correlation, permutation procedures). Emphasis
on hands-on applications in computer lab. Prerequisite: Environment 214 or consent of
instructor. Instructor: Urban. 3 units.

353. Advanced Topics in Landscape Ecology. Small groups of students working together
to complete a project in landscape analysis integrating remote sensing, geographic
information systems, spatial analysis, and simulation modeling. Expectation is that each
student will have experience in at least one of these areas. Consent of instructor required.
Offered on demand. Instructors: Halpin and Urban. Variable credit.

354. GIS Analysis for Conservation Management. This course explores applications of
geospatial and spatial analysis to conservation management issues such as habitat analysis,
biodiversity protection assessments, and nature reserve design. The primary goals of the
course are: (1) to critically assess the theoretical underpinnings of conservation analysis
techniques; and (2) to develop a high level of proficiency in the application of geospatial
and spatial analysis techniques for conservation management problems. Prior experience
with GIS systems and consent of instructor required. Instructors: Halpin and Urban. 3 units.
356. **Environmental Fluid Mechanics.** Introduction to turbulent fluid flow and Navier Stokes equations; basic concepts in statistical fluid mechanics; development of prognostic equations for turbulent fluxes, variances, and turbulent kinetic energy; Monin and Obukhov similarity theory for stratified turbulent boundary layer flows; applications to CO2, water vapor, and heat fluxes from uniform and nonuniform surfaces; the local structure of turbulence and Kolmogorov's theory; turbulent energy transfer and energy cascade between scales; turbulence measurements in the natural environment. Prerequisite: Civil Engineering 122L, Mathematics 111 or 135, or equivalent. Instructor: Katul. 3 units.

357L. **Satellite Remote Sensing for Environmental Analysis.** Environmental analysis using primarily satellite remote sensing. Theoretical and technical underpinnings of remote sensing (georectification, image analysis, classification) coupled with practical applications (land cover mapping, change analysis, ground truth techniques). Strong emphasis on hands-on processing and analysis. Will include variety of image types: multi-spectral, hyperspectral, radar and others. Prerequisite: Environment 259 or consent of instructor. Instructor: Swenson. 4 units.

358. **Multivariate Analysis in Community and Landscape Ecology.** Assembly in a lab setting portfolios of strategies for interpreting multivariate ecological datasets such as those relating species abundance to environmental variables, focusing on techniques commonly used by vegetation scientists (for example, ordination, classification, etc.). Emphasis on using and interpreting UNIX and PC-based software. Consent of instructor required. Instructor: Urban. 3 units.

368. **Natural Resources Law.** Focus on constitutional, statutory, and common law governing the legal status and management of federal lands and natural resources. Instructor: Salzman. 2 units. C-L: see Law 368

374. **Principles of Management.** Provides introduction to business terminology and practices for environmental professionals. Introduce students to foundational concepts and language associated with the different functional areas of the firm and to some of the processes and tools available to organizational managers to enhance organizational effectiveness. Areas covered include finance and accounting, management and leadership, and organizations and strategy. Permission of instructor required. Instructor: Emery. 3 units.

385. **Environmental Decision Analysis.** Quantitative methods for analyzing environmental problems involving uncertainty and multiple, conflicting objectives. Topics include subjective probability, utility, value of information, multiattribute methods. Students will apply these tools to an environmental policy decision in a group project. Prerequisite: introductory applied statistics or equivalent. Instructor: Anderson. 3 units.

391. **Environmental Social Science Research Workshop.** Seminar format designed to give graduate students in environmental social sciences a venue to present research proposals and preliminary work. Emphasis is on application of social science research methods. Includes presentations by faculty and students. Intended for doctoral students in environmental social sciences. Students wishing to earn more than one credit will prepare an additional separate paper on topic with approval of instructor. Permission of instructor required. Instructor: Kramer. Variable credit.

394. **Professional and Field Skills.** A series of modules offered on a rotating basis over the four semesters of a professional master's program. Modules consist of one to twenty hours of instruction in a skill needed for professional development or competence in field sampling or laboratory techniques. Examples of topics include environmental negotiation; environmental safety; use of computer packages; preparing presentations and written
reports; sampling design; field sampling of trees, herbaceous plants, stream bottom organisms; toxicological testing using plankton. Instructor: Maguire. Variable credit.

398. Program Area Symposium. Required symposium in each program area. Students present master's project research. Pass/fail grading only. Instructor: Staff. 1 unit.

399. Master's Project. An applied study of a forestry or environmental management problem or a theoretical research effort. A seminar presentation of the objectives, methodology, and preliminary findings is required. A written (or other medium) report at the conclusion of the project is also required. Undertaken with the guidance of the student's adviser. Consent of instructor required. Pass/fail grading only. Instructor: Staff. Variable credit.

Duke Environmental Leadership (DEL) Courses (ENVIRON)

The following courses are offered to students enrolled in the Duke Environmental Leadership program. Other M.E.M./M.F. students can take these courses numbered 400–459 only with permission of the instructor and if space is available. Courses numbered 460 and above are open only to D.E.L.–M.E.M. students.

405. Environmental Communication for Behavior Change - Online Course. Course provides environmental professionals with a practical introduction to the strategies, methods, and tools of environmental communication that effectively lead to changes in behavior. Emphasis on practical, field-based tools. Intensive online course. Consent of instructor required. Instructor: Day. 1 unit.

410. Implementation of the National Environmental Policy Act on Federal Lands and Facilities. Overview of NEPA history, purpose, content, case law, and current issues. Discussion of methods of implementing regulations efficiently, conducting and processing an environmental impact analysis, and determining the proper level of documentation to fully record and disclose to the public the results of environmental analysis. Intensive. Consent of instructor required. Instructor: Clark. 1 unit.

462. Duke Environmental Leadership: Economics of Environmental Management. An economic perspective on the management of environmental resources. Conceptual topics emphasized include environmental externalities, market failure, public goods, sustainability, and benefit-cost analysis. Applications illustrate the role of price signals in energy choices, managing renewable resource use over time, use of marketable pollution permits to encourage voluntary reductions in air and water pollution, and the political economy of environmental policy formulation. Case studies examine carbon trading and taxes to address climate change, and economic incentives and values for biodiversity conservation. Instructor consent required. For Duke Environmental Leadership-Master of Environmental Management students only. Instructor: Kramer. 3 units.

463. Duke Environmental Leadership: Program Management for Environmental Professionals. In the private and public sectors, as well as not-for-profit organizations, managerial effectiveness is central to environmental leadership. This course will focus on the development of management skills including decision-making, motivation, working in teams, organizational cultures, organizational design, learning organizations and change management. For Duke Environmental Leadership-Master of Environmental Management students only. Consent of instructor required. Instructor: Christensen. 3 units.

464. Duke Environmental Leadership: Environmental Law and Policy. Environmental policies have evolved from strict reliance on command and control systems to experimentation with alternative approaches. In this course students study this evolution by first examining the history and context of U.S. policy development processes and institutions. Command approaches to air and water pollution and waste management are considered along with alternative approaches, such as market-based programs, public-private partnerships and voluntarism. Policies for managing land, natural resources, species protection and addressing transnational and global environmental problems are examined. Policy implementation and devolution of responsibilities to state and local governments and the private sector is stressed. For Duke Environmental Leadership-Master of Environmental Management students only. Consent of instructor required. Instructor: Gallagher. 3 units.

465. DEL: Environmental Leadership Module. One of the driving themes of the DEL-MEM Program is leadership. We believe that leadership is cultivated by each individual and requires time and effort; it is a process. Participation in the DEL-MEM program will put students one step closer in their leadership pursuit by providing opportunities to assess and enhance leadership skills, building confidence in critical and creative thinking, communication, collaboration and conflict resolution. This course is designed to orient students towards these goals. More specifically, to provide a framework and point of reference for students’ leadership development. During the three-day session, we will explore leadership in a variety ways, including individual meetings with prominent leaders in the field, discussions, and case study project. Students will also experience Washington,
D.C. through a tour of the Capitol, meetings with Congressional members and staff, and time on the Mall. For DEL-MEM students only. Permission of instructor required. Instructor: Christensen. 1 unit.

470. Duke Environmental Leadership: A Landscape Perspective on Environmental Management. Environmental management is pursued at increasingly larger spatial scales. As a direct consequence, we encounter more spatial heterogeneity and logistical constraints on empirical approaches. The field of landscape ecology specifically addresses issues of spatial scale and heterogeneity as these influence our ecological understanding and management of natural and seminatural systems. This course is an applications-driven survey of common tasks in landscape management, including inventory and monitoring programs and prioritizing sites according to various criteria (e.g., diversity hotspots, environmental impacts). Specific applications emphasize ecosystem processes (productivity, hydrology) and conservation planning at large scales. To address the uncertainty that naturally attends these applications, the course is developed in the framework of adaptive management. For Duke Environmental Leadership-Master of Environmental Management students only. Consent of instructor required. Instructor: Urban. 3 units.

471. Duke Environmental Leadership: U.S. Land Use Policy. This course covers the economic and demographic forces that drive the allocation of land among alternative uses, and the institutional structure that has evolved in the U.S. at local, state and federal levels to deal with land use problems. Topics include food and timber supply, federal lands, sprawl, industrial siting, property rights, and coastal zone management. For Duke Environmental Leadership-Master of Environmental Management students only. Consent of instructor required. Instructor: Healy. 3 units.

472. DEL: Environmental Decision Analysis. In environmental management, things don't always turn out as expected. You must address multiple goals, even when those goals themselves conflict. You must respond to diverse stakeholders, with varying worldviews. The tools of decision analysis help you to - going beyond unaided intuition - organize and analyze difficult environmental management decisions. This course covers quantitative methods for analyzing environmental problems involving uncertainty and multiple, conflicting objectives. Topics include subjective probability, utility, value of information, and multiattribute methods. Students will apply these tools to an environmental policy decision in a group or individual project. For DEL-MEM students only. Instructor: Maguire. 3 units.

473. DEL: Business Strategy for Environmental Sustainability. Businesses are increasingly applying strategic management tools to incorporate considerations of sustainability into decision-making and operations. While some businesses incorporate sustainable practices because of an ethical conviction to do well for the environment, most businesses are motivated to do so to address pressures from stakeholders such as regulators, shareholders, customers and neighbors and to exploit knowledge and expertise for long-term competitive advantage. This course focuses on the development and implementation of strategies to promote environmental sustainability. Students examine roles and responsibilities of sustainable strategic managers and learn how to apply the tools of strategic management, such as external analysis, forecasting and stakeholder management to problems of sustainability. Business case studies are critical component to this course. For DEL-MEM students only Instructor: Gallagher. 3 units.

474. DEL: Seeing the Big Picture: Lessons from Watershed Management in California. This course is an exploration of the interdisciplinary and often controversial nature of
watershed management in California using examples from arguably the most manipulated and well-studied watershed in the US. These problems and their solutions are relevant to all watersheds. Topics include: host factors governing fish and wildlife responses and effects; fate, transport, and biogeochemistry of agricultural chemicals; exotic species introduction; economics considerations governing water allocations storage; transport, and conservation; and conflict resolution efforts between competing interest groups. Permission of instructor required. Instructor: Hinton. 3 units.

475. DEL: Ecosystem Change: Science and Management Implications. This course will review classical models and case studies of disturbance and ecosystem succession, patch dynamics, and non-equilibrium models for ecosystem change. Particular attention will be given to the influence invasive species and climate change on patterns succession and to concepts such as multiple stable points and change thresholds. The implications for management of terrestrial, aquatic and marine ecosystems of these concepts will be emphasized. Lectures, readings, and discussion. Term paper required. Permission of instructor required. Instructor: Christensen. 1 unit.

476. DEL: Emerging Perspectives on Landscape Management. This course is developed in response to a few emerging trends in environmental management. First, management is being pursued at increasingly larger spatial scales. Second, the context of management is also rapidly changing, including increasing emphasis on multi-criteria or multi-objective programs, prioritization of sites strictly in relationship to a larger network of units, and adaptive approaches to management. Beyond these trends, it is important to note that the tools of environmental management are also evolving rapidly. This module is designed as a "professional update" in emerging trends, as well as an introduction to new methods being applied to these areas. Permission of instructor required. Instructor: Urban. 1 unit.

477. DEL: Environmental Information and Analysis Systems. Developing, maintaining and sharing high-quality information is one of the fastest growing challenges in the field of environmental management. Environmental researchers and managers are both the developers and consumers of extensive geographic data, imagery and statistical archives. Environmental managers now must meet expectations of real-time data sharing across widely distributed projects within detailed data assurance standards. In order to meet these challenges, managers must understand complex relational databases, internet-based data delivery systems, and international metadata standards. This course focuses on essential issues of database development, delivery and maintenance for environmental managers. The course highlights new developments in digital data archives, internet map servers and collaborative programs, and uses emerging projects, protocols and current case studies to demonstrate good management choices, strategies and evaluation processes. Instructor: Staff. 1 unit.

497. Duke Environmental Leadership: Independent Studies and Projects. Directed readings or research at the graduate level to meet the needs of individual students. For Duke Environmental Leadership-Master of Environmental Management students only. Instructor consent required. Instructor: Staff. Variable credit.

499. Duke Environmental Leadership: Master's Project. An applied study of a forestry or environmental management problem or an original research effort. A seminar presentation of the objectives, methodology, and preliminary findings is required. A written (or other medium) report at the conclusion of the project is also required. Undertaken with the guidance of the student's advisor. For Duke Environmental Leadership-Master of Environmental Management students only. Consent of instructor required. Instructor: Staff. 4 units.
Earth and Ocean Sciences (EOS)

11. The Dynamic Earth. Introduction to the dynamic processes that shape the Earth and the environment and their impact upon society. Volcanoes, earthquakes, seafloor spreading, floods, landslides, groundwater, seashores and geohazards. Emphasis on examining the lines of inductive and deductive reasoning, quantitative methods, modes of inquiry, and technological developments that lead to understanding the Earth's dynamic systems. Not open to students who formerly have taken EOS 41. Instructor: Baker, Klein, Murray, Pratson. 1 unit.

12. The Dynamic Oceans. The oceans and their impact on the Earth's surface, climate, and society. Topics include seafloor evolution, marine hazards, ocean currents and climate, waves and beach erosion, tides, hurricanes/cyclones, marine life and ecosystems, and marine resources. Emphasis on the historical, society and economic roots of oceanography, the formulation and testing of hypotheses, quantitative assessment of data, and technological developments that lead to understanding of current and future societal issues involving the oceans. Includes a series of small field studies conducted at the Marine Laboratory. Required fee for trip. Not open to students who have taken Earth and Ocean Sciences/Biology 53. Instructors: Baker, Corliss, Lozier, Murray, Pratson, or Searles. 1 unit. C-L: Biology 53

49S. First-Year Seminar. Topics vary each semester offered. Instructor: Staff. 1 unit.

90FCS. Fossils and Climate Change. Study of the use of animal and plant fossils including geochemical analyses of fossils to understand past climates; review of invertebrate fossils in the laboratory. Climatic changes in both terrestrial and oceanic environments over time scales ranging from millions to hundreds of years. A three-day field trip to include fossil collecting on the North Carolina coastal plain and studying modern coastal environments and living invertebrates at the Duke University Marine Laboratory. Open only to students in the FOCUS Program. Instructor: Corliss. 1 unit.

100. Duke-Administered Study Abroad: Advanced Special Topics in Earth and Ocean Sciences. Topics differ by section. Instructor: Staff. 1 unit.

101L. The Solid Earth: Minerals, Rocks and Structural Geology. Description and interpretation of minerals, rocks and geologic structures. Lectures on theoretical aspects, lab on practical applications and use of petrographic microscope. Prerequisite: Earth and Ocean Sciences 11. Not open to students who have taken Earth and Ocean Sciences 105. Instructor: Boudreau. 1 unit.

102. The Fluid Earth. Introduction to the dynamics of ocean and atmospheric circulations, with particular emphasis on the global climate cycle. Prerequisites: Mathematics 31 and 32, Physics 53L or consent of instructor. Not open to students who have taken Earth and Ocean Sciences 160. Instructor: Lozier. 1 unit.

103S. The Surface of the Earth. Fundamental earth surface processes involving weathering, soils, hillslopes, rivers, wind, glaciers, and tectonic activity. Humans as agents of landscape change. The future of landscape. Not open to students who have taken Earth and Ocean Sciences 121. Prerequisites: Earth and Ocean Sciences 11 or 12. Instructor: Haff or Murray. 1 unit.

107L. The Evolving Earth and Life. Evolution of the earth and life through time. Weekend field trip to Appalachian Mountains. Prerequisites: Earth and Ocean Sciences 11, or consent of instructor. Not open to students who have previously taken Earth and Ocean Sciences 172L. Instructor: Corliss. 1 unit.
115. Waves, Beaches, and Coastline Dynamics. Oceanographic and geologic processes responsible for the evolution of nearshore features; fluid motions of many time scales in the nearshore environment, including waves and currents. Conceptual basis for models of how fluid motions interact with the shape of the beach and bed in the surf zone, giving rise to features such as beach cusps, bars, channels, and barrier islands. Various attempted engineering and coastal management solutions to the global retreat of shorelines. Instructor: Murray. 1 unit.

119. Experiencing Geoscience. Applications of the geosciences in the field and laboratory, and through quantitative approaches. Prerequisite: Earth and Ocean Sciences 11 or 12. Instructor: Staff. 1 unit.

120. Environmental Geology. A case history, field and lab exercise, and quantitative model approach to the role of geological materials and processes in environmental assessment studies. The quantitative and qualitative impact of rock type, faulting, folding, volcanism, weathering, erosion, flooding, and underground fluid flow on the human environment. An introduction to quantitative probabilistic hazard analysis and its application to establishing monetary cost/benefit ratios. The basics of engineering geology in environmental studies. Cases taken from current and past geological studies of environmentally sensitive sites. Consent of instructor required. Instructor: Malin. 1 unit. C-L: Earth and Ocean Sciences 224

123. Hydrogeology. An overview of the hydrologic cycle and its impact on global climate and local environmental problems. Examines ethical dilemmas encountered in communicating environmental analysis to the public. Prerequisite: Mathematics 32 and Chemistry 22L or consent of the instructor. Instructor: Vengosh. 1 unit.

125. The Future. Introduction to the future as a continuation of the geological, biological, and technological evolution of the Earth. Topics include developments and trends in computation, the internet, nanotechnology, space exploration, artificial intelligence, robots and biotechnology and their effects in society. Prerequisite: Earth and Ocean Sciences 11 or 12. Instructor: Haff. 1 unit.

126S. Field Methods in Earth and Environmental Sciences. Introduction to basic field methods used in the earth and environmental sciences. Field investigations focus on topics such as groundwater and surface water movements, soil chemistry and identification, topographic and geologic mapping, the atmosphere/soil interface, and plant identification and distributions. Design of a field investigation, collection of data to address a specific goal, and interpretation and reporting of the results. Emphasis on learning to report field results in the format of scientific publications. Visits to five local field sites. Open only to juniors and seniors. Instructor: Klein. 1 unit. C-L: Environment 126S

130. Energy and the Environment. Overview of the challenges confronting humanity as a consequence of our reliance on energy. Challenges include dwindling supplies, rising demand and environmental degradation. Realistic responses require an understanding of the complexity of the energy system, including energy resources, uses, and impacts, in the context of social, political and economic imperatives. Lectures will be augmented by presentations from guest speakers from industry, government and non-profit organizations. Instructor: Pratson. 1 unit. C-L: see Environment 130

131. World Trade In Energy and Mineral Resources. Exploration of the physical, economic and geopolitical flow of energy and mineral resources around the world. Topics include examination of economically important energy and mineral resources, their uses, geologic/geographic distribution, and influence on the economic and political organization of and interaction between nations. The trade of energy and mineral resources explored in
light of current demand, remaining supplies, technical and geopolitical accessibility, refining and distribution systems, and pricing, as well as the environmental impacts and future challenges facing continued use of these resources. Prerequisite: Earth and Ocean Sciences 11 or 12 or Environment 25. Instructor: Pratson. 1 unit. C-L: see Environment 131

140. Remote Sensing in Earth Science. Scientific and technological principles of remote sensing and its application in various disciplines of the Earth Sciences. Principles include fundamental physics of electromagnetic radiation, sensors and imaging systems, and image processing and analysis. Applications include topographic mapping, characterization and quantification of surface processes, water, mineral and petroleum exploration; landscape change and land use assessment. Prerequisites: Earth and Ocean Sciences 11 or 12 or permission of instructor. Instructor: Pratson. 1 unit.

145L. Fossils and Their Applications. Paleoecology, functional morphology, and geochemistry of organisms applied to understanding paleoenvironmental, paleoceanographic, and paleoclimatic reconstructions and the history of biodiversity and mass extinctions. Laboratory survey of systematics and anatomy of animal and plant fossils, and their paleoenvironmental, geological, and evolutionary applications. Not open to students who have taken Earth and Ocean Sciences 90S. Instructors: Corliss, Wray, and staff. 1 unit.

151S. Global Environmental Change. Topics in the seminar will include climate change, earth surface alteration, prediction, water and carbon cycling, sea-level rise and coastal erosion, biodiversity, fossil fuels and energy resources, water resources, soil fertility, and human impact on coastal zone ecosystems. Instructor consent required. Instructor: Baker. 1 unit.

155. Global Warming. Broad, interdisciplinary course on the science of global warming, its predicted impact, and various policy and technology options that have been proposed to mitigate its effect. Includes a short introduction to climate theory and models, discussions on important greenhouse gas, and model projections for the twenty-first century and beyond. Instructor: Crowley. 1 unit.

159. Fundamentals of GIS and Geospatial Analysis. Fundamental aspects of geographic information systems and satellite remote sensing for environmental applications. Concepts of geographic data development, cartography, image processing, and spatial analysis. Prerequisite: an introductory statistics course. Consent of director of undergraduate studies required. Instructor: Haplin. 1 unit. C-L: see Environment 159

173. Dinosaurs, Fossil Fish, and Yellowstone. Paleontology, geology, and ecology of Dinosaur National Monument, Fossil Butte National Monument, and Yellowstone National Park. One-week camping trip to study areas. Consent of instructor required. Prerequisite: recommended: Earth and Ocean Sciences 90S or Earth and Ocean Sciences 172L. Instructor: Corliss. 1 unit.

180S. Volcanology: Geology of Hawaii. Geology of volcanic processes and the benefits and hazards they present to society. Lectures, discussion and student presentations of independent research reports. Required field trip to Hawaii during spring break. Prerequisite: Earth and Ocean Sciences 11 recommended. Not open to students who have previously taken Earth and Ocean Sciences 104 or 108. Consent of instructor required. Instructor: Staff. 1 unit.

186S. The San Andreas Fault and Geology of West-Central California. Field oriented course on the Cenozoic regional geology of west-central California along the San Andreas fault between San Francisco and Los Angeles. Emphasis on direct observation of the human
impact of the active tectonics and its effects on engineering practice. Qualitative and quantitative descriptions of the effects and damages of past earthquakes, landslides, and ground water changes on the environment. Particular focus on the Parkfield section of the San Andreas, site of an international drilling effort. Includes required field trip over fall break. Prerequisite: Earth and Ocean Sciences 11. Instructor: Malin. 1 unit.

187S. Marine Geology of South Florida. Spatial and temporal analysis of geology of south Florida. Includes class discussions, required spring break field trip to South Florida, trip presentation, post-trip research paper. Examination of shallow marine sedimentary environments including reefs, mudbanks, and mangrove forests and islands, and their ancient counterparts in rock outcrops and sediment cores. Prerequisite: Earth and Ocean Sciences 11 or 12, or consent of instructor. Instructor: Dwyer. 1 unit.

189S. Senior Capstone Experience. Senior capstone field trip course. Field location varies. Topics in geology, hydrology, biology, climate, and other environmental subjects as appropriate for field area, especially human impact on the earth and the role of earth scientists as observers and teachers of earth-system change. Course content partially determined by students. Prerequisites: Open only to senior Earth and Ocean Sciences majors. Consent of director of undergraduate studies required. Instructor: Staff. 1 unit.

191. Research Independent Study. Individual research in a field of special interest under the supervision of a faculty member, the central goal of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

192. Research Independent Study. See Earth and Ocean Sciences 191. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

193. Independent Study. Directed reading or individual projects. Term paper required. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

194. Independent Study. See Earth and Ocean Sciences 193. Term paper required. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

195. Independent Study for Nonmajors. Individual research and reading in a field of special interest, under the supervision of a faculty member, resulting in a term paper containing significant analysis and interpretation of a previously approved topic at end of semester. Open to qualified juniors and seniors upon approval of the departmental faculty. Instructor: Staff. 1 unit.

209S. Paleoclimate. Nature and mechanisms of climate variability throughout Earth history. Topics include general theory of climate, paleoclimate modeling and comparisons with observations, methodologies of reconstructing past climate variations, the observational record of paleoclimate extending from the Precambrian through the Ice Ages
and Holocene to present, and the impact paleoclimate on biotic evolution/paleogeography and human cultural history. Consent of instructor required. Instructor: Baker or Crowley. 3 units.

210S. Paleoenvironmental Analysis. Methods of paleoenvironmental and paleoclimatic analysis. Includes radiometric and other methods of dating, stable isotopes, trace elements, paleobiotic and other methods of reconstructing climate, hydrology and environment of the past. Also includes approaches to modeling paleoenvironmental data. Instructor: Baker. 3 units.

211. The Climate System. Components of the climate system: observed climate change, concept of energy balance, basic circulation of the atmosphere and ocean, introduction to climate models, sample applications of climate models, interactions between the atmosphere/ocean/ and biosphere, land surface, cryosphere (snow and ice), and chemistry of the atmosphere. Prerequisite: consent of instructor. Instructor: Crowley. 3 units.

212. Climate Change. The Climate system, introduction to climate dynamics, patterns of climate variability, climate models. Greenhouse effect, carbon cycle, other external influences on climate, climate change and uncertainty, twentieth-century climate change, projections of future climate change due to greenhouse warming, potential for sudden changes. Aspects of changes include temperature, rainfall, patterns of variability, climate extremes, ocean changes, and sea level changes. Instructor: Hegerl. 3 units.

213. Modern and Ancient Oceanic Environments. Description of oceanic environments and geological processes that create or modify them through time. Reconstruction of paleoenvironmental/paleoceanographic conditions in the world's oceans using sediments and fossils with emphasis on global climate change over a range of time scales. Inductive interpretations of geological data to construct paleoenvironmental models. Includes field trip. Research paper required. Instructors: Corliss and staff. 3 units.

214. Advanced Issues in Paleoclimatology. Major issues in paleoclimatology including: decadal-millennial climate variability, ice age climates, the deglaciation, nonglacial climates, Paleozoic climates, ice core studies, Snowball Earth, carbon dioxide, volcanism, abrupt climate change, modeling studies, climate and extinctions. Consent of instructor required. Instructor: Crowley. 3 units.

215. Introduction to Physical Coastal Processes. Nearshore physical processes responsible for the evolution of beaches and barrier islands. Various problems and possible solutions arising from human development of retreating shorelines. Involves a field trip and research paper. Consent of instructor required. Instructor: Murray. 3 units.

220. Introduction to Fluid Dynamics. Conservation equations for mass, momentum and heat, with an emphasis on large temporal and spatial scales; application to the earth, ocean, and environmental sciences. Some background in differential equations highly recommended. Instructor: Lozier. 3 units.

222. The Geology Side of Energy. The elementary geology of Earth's energy resources; how the Earth provides usable energy. Energy exploration. The geology of hydrocarbon, geothermal system, and fissionable element reservoirs. Alternative energy reservoirs such as gas clathrates and peat. The geologic conditions for CO2 sequestration. Global energy resource assessment. Speakers from industry and government. Optional field trip to active energy exploration and production sites during Fall Break. Prerequisites: upper division or graduate standing. Instructor: Malin. 3 units.

Earth and Ocean Sciences (EOS) 141

seminars throughout the semester focusing on a required Fall Break trip to Yucca Mountain and environs. Discussions of "consilience" of technology and policy faced with the reality of the site's geology. Topics include elementary site geology, hazard analysis, engineering plans, relevant policy background; includes guest speakers. Consent of instructor required. Open only to juniors, seniors, and graduate students. Instructor: Malin. 3 units.

225. Water Contamination. Geochemistry of water contamination, focusing on behavior of inorganic constituents dissolved in rainwater. Contaminants produced by human interactions with the environment, such as industry and construction. Salinization and desalinization. Prerequisites: Chemistry 22L. Instructor: Vengosh. 3 units.

226S. Water Forum Speaker Series. Seminar including visiting scholars covering a broad array of issues on water quality, hydrogeology, biogeochemistry, water management, water treatment, ecology, water economy, and water policy and law at both the national and international levels. Instructor: Vengosh. 3 units.

233S. Oceanic Crust and Ophiolites. Structure, tectonics, petrology, and geochemistry of oceanic spreading environments and ophiolite complexes. Prerequisite: Earth and Ocean Sciences 106L or consent of instructor. Instructor: Staff. 3 units.

236S. Lithosphere Plate Boundaries. Plate tectonics and the geological and geophysical expression of orogenic belts, spreading centers, transform faults, subduction zones. Prerequisite: Earth and Ocean Sciences 101L or consent of instructor. Instructor: Staff. 3 units.

242S. New Perspectives and Methods in Surface Process Studies. Nonlinear dynamics and related approaches to understanding, modeling, and analyzing physical systems, with emphasis on applications in geomorphology. Consent of instructor required. Instructor: Murray. 3 units.

243S. Landscape Dynamics. How landscape changes with time. The dynamics and mechanisms of earth surface processes underlying landscape change. Hillslope, fluvial, marine, glacial, volcanic, tectonic and aeolian processes. Reading and discussion of primary literature; several field trips to Duke Forest. Prerequisite: Earth and Ocean Sciences 11 or consent of instructor. Instructor: Haff and Pratson. 3 units.

246S. Nearshore Hydrodynamics and Sediment Transport. Phenomena resulting from waves, wave momentum (radiation stress), and wave interactions. Includes oscillatory flow, long period (infragravity) motions, and mean currents. Nearshore sediment transport and possible origins of beach and nearshore topographic features. Consent of instructor required. Instructor: Murray. 3 units.

251S. Global Environmental Change. Topics in the seminar will include climate change, earth surface alteration, prediction, water and carbon cycling, sea-level rise and coastal
erosion, biodiversity, fossil fuels and energy resources, water resources, soil fertility, human impact on coastal zone ecosystems. Prerequisite: consent of instructor. Instructor: Baker. 3 units.

252. Introduction to Geophysics. Critical and mathematical evaluation of the earth's seismology, gravity, magnetism, heat flow, and internal dynamics. Derivation and evaluation of the basic equations of geophysics and geodynamics. The physics and computer methods of the locations and mechanics of earthquakes, seismotectonics and crustal dynamics, the earth's internal layers, the gravitational attraction of mountains, the magnetic properties of rocks, the cooling of the earth, and the basics of continental drift. Original research project required. Prerequisite: upper division or first-year graduate standing in science or engineering. Instructor: Malin. 3 units. C-L: Physics 252

255. Seismology I. Quantitative review of global to local seismology, seismic waves, the earthquake source, and the relevant structure of the earth. Topics included are basic elasticity, derivation of elastodynamic relationships for seismic waves and basics of wave propagation in layered media. Can be taken after Earth and Ocean Sciences 256. Prerequisite: one upper-division course in physics, mathematics, engineering or geology. Quantitative relations will be used in class and in homework. Instructor: Malin. 3 units.

256. Seismology II. Quantitative review of global to local seismology, seismic waves, the earthquake source, and the relevant structure of the earth. Topics include ray theory, travel time analysis of local and teleseismic arrivals, earthquake location and source problems. Can be taken before Earth and Ocean Sciences 255. Prerequisite: one upper division course in physics, mathematics, engineering, or geology. Instructor: Malin. 3 units.

257. Seismology III Exploration Seismology. The basics of refraction profiling, reflection profiling, and their extensions to global, regional, local, and near-surface seismic exploration. Structure of the core, mantle, and crust with special emphasis on profiling regional scale geologic relations. Prerequisite: upper division courses in physics, mathematics, and geology. Topics also vary with student interest. Instructor: Malin. 3 units.

258. Seismology IV Theoretical Seismology. Topics include ray theory, layered media, normal modes, scattering, and earthquake source mechanics. Prerequisite: upper division courses in physics, mathematics, and geology. Topics also vary with student interest. Instructor: Malin. 3 units.

269. Thermodynamics of Geological Systems. Introductory thermodynamics applied to geologic problems through understanding of phase equilibrium. Prerequisites: Earth and Ocean Sciences 101L; and Mathematics 32 or consent of instructor. Instructor: Boudreau. 3 units.

271. Stable and Radioactive Isotopes in Environmental Sciences. Theory and applications of stable and radioactive isotope distributions in nature (including oceanographic, geologic, hydrologic, and biological processes). Prerequisites: Chemistry 22L and Mathematics 32. Instructor: Baker. 3 units.

272. Biogeochemistry. Processes controlling the circulation of carbon and biochemical elements in natural ecosystems and at the global level, with emphasis on soil and surficial processes. Topics include human impact on and social consequences of greenhouse gases, ozone, and heavy metals in the environment. Prerequisite: Chemistry 12L or 22L or equivalent. Instructor: Schlesinger. 3 units. C-L: Biology 272

273S. Analytic Techniques. An introduction to advanced analytic procedures used in the earth sciences: such as electron microbeam techniques (scanning electron microscopy,
electron microprobe analysis) and plasma emission/absorption spectroscopy. Consent of instructor required. Instructors: Boudreau and Klein. 3 units.

285S. Layered Intrusions. Survey of layered igneous intrusions and current theories on crystallization and other processes occurring in mafic magmas. Quantitative methods related to magma crystallization including crystal size distribution theory, quantitative analysis of rock texture and its interpretation, crystal aging and numerical models of compaction, infiltration and reaction processes occurring in magma chambers. Offered alternate years. Research paper and presentation required. Prerequisites: Earth and Ocean Sciences 101L or consent of instructor. Instructor: Boudreau. 3 units.

291. Independent Study. Consent of instructor required. Instructor: Staff. 3 units.

293S. Frontiers of Geology I. Survey of the history, status, and trajectory of "hard-rock" petrology, structural geology, tectonics, and geophysics. Instructors: Karson and staff. 3 units.

294S. Frontiers of Geology II. Survey of the history, status, and trajectory of "soft-rock" petrology, stratigraphy, sedimentation, geochemistry, hydrology, and paleontology. Instructors: Karson and staff. 3 units.

295S. Advanced Topics in Geology. Topics, instructors, and credits to be arranged each semester. Instructor: Staff. Variable credit.

300. Topics in Earth Processes. A broad overview of earth processes pertaining to human and environmental concerns. Provides the essential background for all environmental fields. Especially relevant to interests in global change, coastal zone processes, energy, and resources. Lectures and panel discussions with faculty from the Nicholas School and invited outside participants. Instructor: Varies. 3 units.

371. Advanced Topics in Geology. To meet the individual needs of graduate students for independent study. Instructor: Staff. Variable credit.

372. Advanced Topics in Geology. To meet the individual needs of graduate students for independent study. Instructor: Staff. Variable credit.

Courses Taught at the Marine Laboratory

Environment (ENVIRON)

114L. Biological Oceanography. Physical, chemical, and biological processes of the oceans, emphasizing factors controlling distribution and abundances of organisms. The theory, methods, and limitations of biological oceanographic research. The laboratory teaches quantitative methods, experimental design, data acquisition, data processing, and data analysis and culminates in a research cruise where the students organize into a scientific party. One course (spring); one and one-half courses (summer). (Given at Beaufort) Prerequisite: Biology 25L. Instructor: Staff. Variable credit. C-L: see Biology 114L

121. Climate Change: A Global Perspective. Introduction to the scientific basis for prediction of global environmental change with emphasis on change in surface temperature, sea level, precipitation, and tropical cyclone activity. As an analytical exercise, students
input temperature data sets from the Bermuda weather service and do basic analysis of Bermuda temperature anomalies over time. (Given at Bermuda.) Prerequisite: one year of chemistry. Instructor: Staff (Bermuda). 1 unit.

122S. Climate-Related Hazards and Humanity. The roles of science, politics, and business in quantifying and managing risks associated with climate-related hazards such as hurricanes. (Given at Bermuda.) Instructor: Staff (Bermuda). 0.5 units.

123. Analysis of Ocean Ecosystems. The history, utility, and heuristic value of the ecosystem; ocean systems in the context of Odum's ecosystem concept; structure and function of the earth's major ecosystems. (Given at Beaufort.) Prerequisite: one year of biology, one year of chemistry, or consent of instructor. Instructor: Staff. 1 unit. C-L: see Biology 123

125. Remote Sensing and Long-term Environmental Monitoring. Introduction to the theory and practice of environmental monitoring. Ocean biogeochemical cycles, tropical ecosystems, monitoring, and air and water pollution impact assessment and monitoring. Individual project required, the output of which is a grant proposal to do future monitoring work on a specific topic; project includes a review and reporting of the relevant literature, analysis of existing data sets on the topic, and the experimental plan for the project. (Given at Bermuda.) Instructor: Nelson. 1 unit.

132S. Current Topics in Oceanography and Marine Biology. Topics including the Iron Hypothesis, toxic algal blooms, and UV light considered through readings in the primary literature and student presentations. Emphasis on critical analysis of methodology, data analysis, and conclusions in primary peer-reviewed literature. (Given at Bermuda.) Prerequisite: introductory biology. Instructor: Staff (Bermuda). 0.5 units.

133S. Molecular Approaches to Questions of Physiology, Ecology, and Evolution in the Marine Environment. Techniques of molecular biology as they relate to physiological, ecological, and evolutionary questions. Examples from the subcellular to global scale taken from classic and contemporary readings from the primary scientific literature. Each participant in the course presents a critical analysis of the literature on a chosen subject. Prerequisite: introductory biology. Instructor: Staff. 0.5 units. C-L: see Biology 133S

134S. Hands on Habitats: Life in Coastal Communities. Natural history and community ecology of coastal habitats. Focus on natural communities and artisan/commercial fishing practices in the coastal ocean, barrier islands, sounds and estuaries. Critical habitats; nursery areas, nesting beaches and rookeries. Commercially important, keystone as well as introduced and endangered vertebrate and invertebrate species. Concurrent enrollment in Humans and the Coast. Instructor: Rittschof. 1 unit.

135. Biology and Conservation of Sea Turtles. Essential biology of sea turtles (evolution, anatomy, physiology, behavior, life history, population dynamics) and their conservation needs; emphasis on their role in marine ecosystem structure and function. Basic ecological concepts integrated with related topics including the conservation and management of endangered species, the contributions of technology to the management of migratory marine species, the role of research in national and international law and policy, and the veterinary aspects of conservation. (Given at Beaufort.) Field trip to Trinidad required. Prerequisite: Introductory Biology. Instructor: Eckert, K. and Eckert, S. 1 unit. C-L: see Biology 125

135L. Biology and Conservation of Sea Turtles. Laboratory version of Biology 125. Includes laboratory and field experience with animals and with their habitat requirements. (Given at Beaufort.) Prerequisite: Introductory Biology. Instructor: K. Eckert and S. Eckert. 1 unit. C-L: see Biology 125L
139L. Marine Ecology. Factors that influence the distribution, abundance, and diversity of marine organisms. Course structure integrates lectures and field excursions. Topics include characteristics of marine habitats, adaptation to environment, species interactions, biogeography, larval recruitment, and communities found in rocky shores, tidal flats, beaches, mangrove, coral reefs, and subtidal areas. Not open to students who have taken Biology 203L. (Given at Beaufort fall and summer.) Prerequisite: introductory biology. Instructors: Crowder or Kirby-Smith (Beaufort). 1 unit. C-L: see Biology 129L

140. A Scientist's Perspective on Environmental Principles, Policy, and Legislation. Introduction to the scientific background of local and global environmental issues, and the policy options/solutions available to deal with the environmental problem. Topics include: economic and socio-political pressures on the environment; local and global atmospheric pollution and air quality issues; coastal and oceanic environmental issues. Bermuda, United States, and global case studies used with a focus on scientific understanding and uncertainty, legislative options and solutions, ecosystem/natural resource conservation and management, and pollution and waste management. (Taught in Bermuda.) Instructor: Bates. 1 unit.

141S. Humans and Development of North Carolina Coasts. Human behaviors, laws and policies that affect development related to coasts and coastal oceans. Leisure tourism development of barrier islands and sounds. Special interests, social groups, political groups and cross cultural conflicts and their resolution. Concurrent enrollment with Hands on Habitats. Instructor: Orbach. 1 unit.

175. Marine Policy. Policy and policy-making concerning the coastal marine environment. History of marine-related organizations, legislation, and issues and their effects on local, regional, national, and international arenas. Use of theoretical and methodological perspectives, including political science, sociology, and economics. (Given at Beaufort.) Instructor: Orbach. 1 unit.

176AL. Marine Invertebrate Zoology. Structure, function, and development of invertebrates collected from estuarine and marine habitats. Not open to students who have taken Biology 274L. One course (fall, spring, and Summer Term II); one and one-half courses (Summer Term I). (Given at Beaufort fall, spring, and summer.) Prerequisite: Biology 25L. Instructor: Kirby-Smith. Variable credit. C-L: see Biology 176AL

176BL. Marine Invertebrate Zoology. Structure, function and development of invertebrates collected from estuarine and marine habitat. Not open to students who have taken Biology 274L. (Given at Bermuda, spring.) Prerequisite: Biology 25L Instructor: Staff. 1 unit. C-L: see Biology 176BL

191. Research Independent Study. Individual research in a field of special interest, under the supervision of a faculty member, the central goal of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Instructor: Staff. 1 unit.

191A. Research Independent Study. See Environment 191. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Half course. Instructor: Staff. 0.5 units.

192. Independent Study. Individual readings course or other non-research-based independent course under the supervision of a faculty member, resulting in an academic product. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Instructor: Staff. 1 unit.
192A. Independent Study. See Environment 192. Open to qualified juniors and seniors with consent of instructor and director of undergraduate studies. Instructor: Staff. 0.5 units.

209. Conservation Biology and Policy. Introduction to the key concepts of ecology and policy relevant to conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). Open to undergraduates only under Biology 109. (Given at Beaufort.) Prerequisite: introductory biology; suggested: a policy and/or introductory ecology course. Instructors: Crowder/Orbach (Beaufort). 3 units.

208. Estuarine Ecosystem Processes. A study of the physical, chemical, geological, and biological processes that control the structure of estuarine communities. Includes readings, oral presentations, and discussion of current literature from the journal *Estuaries*. Discussions focus on the management and policy implications of the science. Restricted to graduate students. (Given at Beaufort.) Prerequisite: ecology, systematics, or field biology course or consent of instructor. Instructor: Kirby-Smith. 3 units.

218L. Barrier Island Ecology. An integration of barrier island plant and animal ecology within the context of geomorphological change and human disturbance. Experimental evidence supporting the theory of barrier island formation and migration; plant and animal adaptations and their evolution, succession ecology, and conservation and restoration ecology. Strong emphasis in labs on independent use of quantitative field observation and research techniques. (Given at Beaufort.) Prerequisite: Biology 25L or equivalent; suggested: course in botany or ecology. Instructor: Staff. 4 units. C-L: Biology 218L

219L. Marine Ecology. Ecology from a basic science perspective. Laboratories target a science-oriented graduate audience. Lecture topics include factors that influence the distribution, abundance, and diversity of marine organisms, characteristics of marine habitats, adaptation to environment, species interactions, biogeography, larval recruitment, and communities found in rocky shores, tidal flats, beaches, mangrove, coral reefs, and subtidal areas. Laboratories and field trips cover ecological principles from a basic science perspective. Not open to students who have taken BIO 129L and not open to undergraduates. (Given at Beaufort.) Prerequisite: Introductory Biology. Instructors: Crowder or Kirby-Smith. 4 units. C-L: see Biology 203L

224L. Coastal Ecosystem Processes. Physical, chemical, and biological processes in the coastal zone of the Carolinas. A unifying theme will be the coupling of watersheds, river basins, estuaries, and the coastal ocean through the movement of ground and surface waters. Topics include hydrology, nutrient cycles, sediment-water column interactions, primary and secondary production, and food web dynamics. Sustaining coastal ecosystems in the face of land use change. (Given at Beaufort). Instructors: Ramus and staff. 4 units. C-L: Biology 219L

225L. Coastal Ecotoxicology and Pollution. Principles of transport, fates, food-web dynamics and biological effects of pollutants in the marine environment. Laboratory to stress standard techniques for assessing pollutant levels and effects. (Given at Beaufort.) Prerequisites: introductory chemistry and biology. Instructor: Staff. 4 units.

226. Marine Mammals. Ecology, social organization, behavior, acoustic communication, and management issues. Focused on marine mammals in the southeastern United States (for example, bottlenose dolphin, right whale, West Indian manatee). Only open to undergraduates under Biology 126. (Given at Beaufort.) Prerequisite: introductory biology. Instructor: Read or staff. 3 units.
226L. Marine Mammals. Laboratory version of Environment 226. Laboratory exercises consider social organization and acoustic communication in the local bottlenose dolphin population. (Given at Beaufort.) Prerequisite: introductory biology. Instructor: Read, Reynolds, and staff. 4 units.

227. Biology and Conservation of Sea Turtles. Essential biology of sea turtles (evolution, anatomy, physiology, behavior, life history, population dynamics) and their conservation needs, emphasizing their role in marine ecosystem structure and function. Will integrate basic ecological concepts with related topics including conservation and management of endangered species, contributions of technology to management of migratory marine species, role of research in national and international law and policy, and veterinary aspects of conservation. (Given at Beaufort.) Prerequisite: Introductory Biology. Instructors: S. Eckert, K. Eckert. 3 units.

227L. Biology and Conservation of Sea Turtles. Biology including the anatomy, physiology, behavior, life histories, and population dynamics of sea turtles linked to conservation issues and management. Focus on threatened and endangered sea turtle species, with special attention to science and policy issues in United States waters. Includes field experience with the animals and with their habitat requirements. Sea turtle assessment and recovery efforts, fishery-turtle interactions, population modeling and state/national/international management efforts. Only open to undergraduates under Biology 125L. (Given at Beaufort.) Prerequisite: introductory biology. Instructor: K. Eckert or S. Eckert. 4 units.

228L. Physiology of Marine Animals. Environmental factors, biological rhythms, and behavioral adaptations in the comparative physiology of marine animals. Open to undergraduates only under Biology 150L. Four units (fall); six units (summer). (Given at Beaufort.) Prerequisites: introductory biology and chemistry. Instructor: Forward. Variable credit. C-L: Biology 253L

229L. Biochemistry of Marine Animals. Functional, structural, and evolutionary relationships of biochemical processes of importance to marine organisms. Open to undergraduates only under Biology 155L. Four units (fall and spring); variable credit (summer). (Given at Beaufort.) Prerequisites: Biology 25L; and Chemistry 11L, 12L. Instructor: Rittschof (fall and summer). Variable credit. C-L: Biology 255L

243. Environmental Biochemistry. Introduction to the (macro)molecules of life and fundamental metabolic pathways. Topics are presented in the context of environmental perturbations. Fundamental aspects of energetics, proteins, enzymes, carbohydrates, lipids, and nucleic acids. Emphasis on mechanisms of adaptation, molecular controls, and responses to toxicants. (Given at Beaufort.) Prerequisite: organic chemistry. Instructor: C. Bonaventura. 3 units. C-L: see Cell Biology 243

253L. Sensory Physiology and Behavior of Marine Animals. Sensory physiological principles with emphasis on visual and chemical cues. Laboratories will use behavior to measure physiological processes. Only open to undergraduates under Biology 156L. (Given at Beaufort.) Prerequisites: introductory biology and chemistry. Instructors: Rittschof. 4 units.

254. Qualitative Research Design in Marine Studies. Examination of the concept of research (philosophy, epistemology, practice) along with methods used widely in the social sciences. Focus is on qualitative methods, and related research ethics, objectives, design, data collection, analysis, and presentation. Consideration of utility of qualitative methods for understanding activities and policy in the marine and coastal environment. (Given at Beaufort.) Instructor: Campbell. 3 units.
256S. Seminar in Ocean Sciences. Biological, chemical, physical, and geological aspects of the ocean and their relation to environmental issues. Consent of instructor required. (Given at Beaufort.) Instructor: Staff. 2 units.

267S. Conservation Biology of Marine Mammals. Examination of issues affecting the conservation of marine mammal populations, including: habitat loss and degradation, interactions with commercial fisheries, and direct harvests. Consent of instructor required. (Given at Beaufort.) Instructor: Read. 2 units.

269S. Advanced Topics in Marine Ecology. Theoretical concepts from population, community, and evolutionary ecology will be linked to observations and experiments to enhance understanding of the structure and function of marine systems. Current topics in marine ecology (for example, marine food web dynamics, species interactions, life history strategies, fisheries ecology, conservation biology). Discussions based on readings from the primary literature with emphasis on developing critical and synthetic skills. Each student will prepare a research proposal in NSF format. May be repeated. (Given at Beaufort.) Instructor: Crowder. 2 units. C-L: Biology 264S

273. Marine Fisheries Policy. Principles, structure, and process of public policy-making for marine fisheries. Topics include local, regional, national, and international approaches to the management of marine fisheries. A social systems approach is used to analyze the biological, ecological, social, and economic aspects of the policy and management process. (Given at Beaufort.) Instructor: Orbach. 3 units.

276. Marine Policy (A). Formal study of policy and policy-making concerning the coastal marine environment. History of specific marine-related organizations, legislation, and issues and their effects on local, regional, national, and international arenas. Topics explored through use of theoretical and methodological perspectives, including political science, sociology, and economics. Consent of instructor required. (Given at Beaufort.) Instructor: Orbach. 3 units. C-L: Public Policy Studies 297, Political Science 264

292L. Biological Oceanography. Physical, chemical, and biological processes of the oceans, emphasizing special adaptations for life in the sea and factors controlling distribution and abundance of organisms. Only open to undergraduates under Biology 114L. Four units (spring); six units (summer). (Given at Beaufort and Bermuda.) Prerequisite: introductory biology. Instructors: Staff (Beaufort); Lomas (Bermuda). Variable credit.

293. Analysis of Ocean Ecosystems. The history, utility, and heuristic value of the ecosystem; ocean systems in the context of Odum's ecosystem concept; structure and function of the earth's major ecosystems. Open to undergraduates only under Biology 123. (Given at Beaufort.) Prerequisite: one year of biology, one year of chemistry, or consent of instructor. Instructor: Barber. 3 units.

295L. Marine Invertebrate Zoology. Structure, function, and development of invertebrates collected from estuarine and marine habitats. Not open to students who have taken Biology 176L, Biology 274L, or Zoology 274L. Open to undergraduates only under Biology 176L. Four units (fall, spring, and Summer Term II); six units (Summer Term I). (Given at Beaufort fall, spring, and summer or at Bermuda, spring.) Prerequisite: Biology 25L. Instructors: Dimock (Beaufort) or Kirby-Smith (Beaufort); Wood (Bermuda). Variable credit. C-L: Biology 274L

322. Coastal Watershed and Policy. Examine hydrology of coastal watersheds and how watersheds modifications impact estuaries and near shore coastal ecosystems. Hydrologic functioning of natural unaltered watersheds is contrasted with changes caused by man's modification of those systems. Include discussion of efforts to remedy impacts through
installation of Best Management Practices and wetlands restoration. Emphasis on gaining understanding of what the impacts of hydrologic change are on biology of coastal waters as watershed development alters the physics, chemistry, and geology of coastal waters. Includes field trips to watersheds in coastal NC. Instructor: Kirby-Smith. 3 units.

324. Marine Conservation Biology. Focus on the ecological effects of fishing, the major threat to marine biodiversity, by examining selected case studies, discussing conservation strategies, and learning how science and policy can be integrated to solve real-world problems. We will use the recent report of the Pew Oceans Commission as the starting point of our discussion. (Taught at Beaufort). Instructor: Read. 3 units.

360S. Political Ecology. Seminar to examine concept of political ecology as means of conceptualizing conservation and development conflicts and solutions. Intended to engage students with political ecology to strengthen usefulness, enrich possibilities, and improve participants ongoing research, collaborations and critical inquiries. Enrollment limited to graduate students. Taught at Beaufort. Instructor: Campbell. 3 units.

Biology (BIOLOGY)

10L. Marine Biology. Physical and chemical aspects of estuarine and marine ecosystems and environments. Functional adaptations of marine organisms and the role of man and society on the ecosystems. Includes field trips to local environments with an emphasis on impacted environments and their relation to societal activity and policy. For students not majoring in natural sciences. (Given at Beaufort.) Instructor: Staff. 1 unit.

109. Conservation Biology and Policy. Introduction to the key concepts of ecology and policy relevant to conservation issues at the population to ecosystems level. Focus on the origin and maintenance of biodiversity and conservation applications from both the biology and policy perspectives (for example, endangered species, captive breeding, reserve design, habitat fragmentation, ecosystem restoration/rehabilitation). (Given at Beaufort.) Prerequisites: introductory biology; suggested: a policy and/or introductory ecology course. Instructors: Crowder (Beaufort) and Rubenstein (visiting summer faculty). 1 unit.

114L. Biological Oceanography. Physical, chemical, and biological processes of the oceans, emphasizing factors controlling distribution and abundances of organisms. The theory, methods, and limitations of biological oceanographic research. The laboratory teaches quantitative methods, experimental design, data acquisition, data processing, and data analysis and culminates in a research cruise where the students organize into a scientific party. One course (spring); one and one-half courses (summer). (Given at Beaufort) Prerequisite: Biology 25L. Instructor: Staff. Variable credit. C-L: Environment 114L

123. Analysis of Ocean Ecosystems. The history, utility, and heuristic value of the ecosystem; ocean systems in the context of Odum's ecosystem concept; structure and function of the earth's major ecosystems. (Given at Beaufort.) Prerequisite: one year of biology, one year of chemistry, or consent of instructor. Instructor: Staff. 1 unit. C-L: Environment 123

125. Biology and Conservation of Sea Turtles. Essential biology of sea turtles (evolution, anatomy, physiology, behavior, life history, population dynamics) and their conservation needs; emphasis on their role in marine ecosystem structure and function. Basic ecological concepts integrated with related topics including the conservation and management of endangered species, the contributions of technology to the management of migratory marine species, the role of research in national and international law and policy, and the veterinary aspects of conservation. (Given at Beaufort.) Field trip to Trinidad required. Prerequisite: Introductory Biology. Instructor: Eckert, K. and Eckert, S. 1 unit. C-L: Environment 135
125L. **Biology and Conservation of Sea Turtles.** Laboratory version of Biology 125. Includes laboratory and field experience with animals and with their habitat requirements. (Given at Beaufort.) Prerequisite: Introductory Biology. Instructor: K. Eckert and S. Eckert. 1 unit. C-L: Environment 135L

126. **Marine Mammals.** The biology of cetaceans, pinnipeds, sirenians, and sea otters. Topics covered include the diversity, evolution, ecology, and behavior of marine mammals and their interactions with humans. Detailed consideration given to the adaptations that allow these mammals to live in the sea. Evaluation of the scientific, ethical, and aesthetic factors influencing societal attitudes toward these animals and of their conservation management in light of domestic legislation and international treaties. (Given at Beaufort.) Prerequisite: introductory biology. Instructor: Read or staff. 1 unit.

126L. **Marine Mammals.** Laboratory version of Biology 126. Laboratory and field exercises consider social organization, behavior, ecology, communication, and anatomy of local bottlenose dolphins. (Given at Beaufort.) Prerequisite: introductory biology. Instructor: Read, or Staff. 1 unit.

129L. **Marine Ecology.** Factors that influence the distribution, abundance, and diversity of marine organisms. Course structure integrates lectures and field excursions. Topics include characteristics of marine habitats, adaptation to environment, species interactions, biogeography, larval recruitment, and communities found in rocky shores, tidal flats, beaches, mangrove, coral reefs, and subtidal areas. Not open to students who have taken Biology 203L. (Given at Beaufort fall and summer.) Prerequisite: introductory biology. Instructors: Crowder or Kirby-Smith (Beaufort). 1 unit. C-L: Environment 139L

132S. **Marine Biodiversity.** Marine biodiversity in the context of theoretical ecology and environmental physiology. Topics include methods for quantifying and evaluating diversity and biological diversity in major marine habitats. Primary literature examples focus on quantifying human impacts and developing conservation measure. Prerequisite: introductory biology. Instructor: Staff. 0.5 units.

133S. **Molecular Approaches to Questions of Physiology, Ecology, and Evolution in the Marine Environment.** Techniques of molecular biology as they relate to physiological, ecological, and evolutionary questions. Examples from the subcellular to global scale taken from classic and contemporary readings from the primary scientific literature. Each participant in the course presents a critical analysis of the literature on a chosen subject. Prerequisite: introductory biology. Instructor: Staff. 0.5 units. C-L: Environment 133S

150L. **Physiology of Marine Animals.** Comparative physiology of estuarine and marine animals. Physics and chemistry of estuarine and marine environments and physiological adaptations of animal residents. Focus on theory, behavioral, and physiological responses of animals to the major environmental drivers of temperature, salinity, oxygen, and light. Lectures and laboratories illustrating the approaches and methodology, analysis techniques, and written reporting of classical environmental physiology research. One course (fall); one and one-half courses (summer). (Given at Beaufort.) Prerequisites: Biology 25L and Chemistry 12L or 22L. Instructor: Forward. Variable credit.

155L. **Biochemistry of Marine Animals.** The molecular basis of behavioral and physiological responses of organisms. Evolution of molecular endocrinology and signal transduction pathways. Focus on the theory and research methodology used to study the evolution of molecular signaling and control systems. Research projects using local invertebrates to study behavioral and physiological responses to environmental signals. Field trips include night walks in local environments and marine fossil expeditions to local sites.
strip mines involved with production of fertilizer, food additives, cement, and gravel. One course (fall); one and one-half courses (summer). (Given at Beaufort.) Prerequisites: Biology 25L; and Chemistry 21L and 22L. Instructor: Rittschof. Variable credit.

156L. Sensory Physiology and Behavior of Marine Animals. Sensory physiological principles with emphasis on visual and chemical cues. Laboratories will use behavior to measure physiological processes. (Given at Beaufort.) Prerequisites: Biology 25L and Chemistry 12L. Instructor: Rittschof. 1 unit.

176AL. Marine Invertebrate Zoology. Structure, function, and development of invertebrates collected from estuarine and marine habitats. Not open to students who have taken Biology 274L. One course (fall, spring, and Summer Term II); one and one-half courses (Summer Term I). (Given at Beaufort fall, spring, and summer.) Prerequisite: Biology 25L. Instructor: Kirby-Smith. Variable credit. C-L: Environment 176AL

176BL. Marine Invertebrate Zoology. Structure, function and development of invertebrates collected from estuarine and marine habitat. Not open to students who have taken Biology 274L. (Given at Bermuda, spring.) Prerequisite: Biology 25L Instructor: Staff. 1 unit. C-L: Environment 176BL

190. Research Independent Study. Individual research and reading in a field of special interest, under the supervision of a faculty member, resulting in a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Open to all qualified students with consent of supervising instructor and director of undergraduate studies. Instructor: Staff. Variable credit.

191. Research Independent Study. Individual research in a field of special interest, under the supervision of a faculty member, the major product of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Open to all qualified students with consent of supervising instructor and director of undergraduate studies. May be repeated. Continued in Biology 297. Instructor: Staff. 1 unit.

193T. Tutorial. For junior and senior majors with consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

197T. Tutorial. For junior and senior majors with consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 0.5 units.

203L. Marine Ecology. Ecology from a basic science perspective. Laboratories target a science-oriented graduate audience. Lecture topics include factors that influence the distribution, abundance, and diversity of marine organisms, characteristics of marine habitats, adaptation to environment, species interactions, biogeography, larval recruitment, and communities found in rocky shores, tidal flats, beaches, mangrove, coral reefs, and subtidal areas. Laboratories and field trips cover ecological principles from a basic science perspective. Not open to students who have taken BIO 129L and not open to undergraduates. (Given at Beaufort fall and summer). Prerequisite: Introductory Biology. Instructors: Crowder or Kirby-Smith (Beaufort). 4 units. C-L: Environment 219L

207AL. Experimental Tropical Marine Ecology. Distribution and density of marine and semi-terrestrial tropical invertebrate populations; behavioral and mechanical adaptations to physical stress, competition, and predation using rapid empirical approaches and hypothesis testing. Offered only at Beaufort, with preparation for fieldwork before and analysis and presentation of projects after required one week intensive field experience on the coast of Panama. Consent of instructor required. Instructor: Rittschof. 2 units.

207BL. Marine Ecology of the Pacific Coast of California. Ecology of the rocky intertidal, kelp forest, and mud flat habitats. Introduction to marine mammals, fish and other
large West Coast vertebrates. Offered only at Beaufort, with preparation for fieldwork before and analysis and presentation of projects after required one week intensive field experience on the coast of Northern California. Prerequisite: Concurrent registration in Biology 129L and consent of instructor. Instructor: Crowder. 2 units.

207CL. Ocean Ecosystems. Interaction of physical, chemical and biological processes, emphasizing processes that determine species composition and quality of plants and animals. Fieldwork with marine organisms, especially plankton, sampling habitats from the continental shelf to the subtropical gyre. Offered only at Beaufort, with preparation for fieldwork before and analysis and presentation of projects after required one week intensive field experience at sea on an oceanographic vessel. Consent of instructor required. Instructor: Barber. 2 units.

207EL. Harmony in Brittany: French Use of Marine Environments. Intensive field experience on the coast of Brittany, including French maritime cultural heritage, regional and national coastal reserves (Le Parc naturel régional d’Armorique; Presqu’île de Crozon), shellfish aquaculture (La Tremblade), seaweed harvest (La Tremblade), and tidal energy (La Rance). Offered only in Beaufort, with preparation for fieldwork before and analysis and presentation of projects after required one week intensive field experience on the coast of France over Fall Break. Prerequisites: Biology 25L and consent of instructor. Instructor: Van Dover. 2 units.

218L. Barrier Island Ecology. An integration of barrier island plant and animal ecology within the context of geomorphological change and human disturbance. Experimental evidence supporting the theory of barrier island formation and migration; plant and animal adaptations and their evolution, succession ecology, and conservation and restoration ecology. Strong emphasis in labs on independent use of quantitative field observation and research techniques. (Given at Beaufort.) Prerequisite: Biology 25L or equivalent; suggested: course in botany or ecology. Instructor: Peterson (visiting summer faculty). 4 units. C-L: see Environment 218L

219L. Coastal Ecosystem Processes. Physical, chemical, and biological processes in the coastal zone of the Carolinas. A unifying theme will be the coupling of watersheds, river basins, estuaries, and the coastal ocean through the movement of ground and surface waters. Topics include hydrology, nutrient cycles, sediment-water column interactions, primary and secondary production, and food web dynamics. Sustaining coastal ecosystems in the face of land use change. (Given at Beaufort.) Instructors: Ramus and staff. 4 units. C-L: Environment 224L

252. Marine Conservation Biology. Ecological effects of fishing, the major threat to marine biodiversity, examined through selected case studies. Conservation strategies and ways that science and policy can be integrated to solve real-world problems. Field trip to Hawaii required. (Taught at Beaufort.) Instructor: Read. 3 units.

253L. Physiology of Marine Animals. Environmental factors, biological rhythms, and behavioral adaptations in the comparative physiology of marine animals. Open to undergraduates only under Biology 150L. Four units (fall); six units (summer). (Given at
254. **Vertebrate and Invertebrate Endocrinology.** Comparative study of the major pathways of hormonal regulation from the organismal to the molecular level in vertebrate and invertebrate models. Applications of endocrinology in pharmaceuticals, cosmetics, and environmental issues. Prerequisites: Biology 25L and Chemistry 152L. A biochemistry course recommended. (Given at Beaufort.) Instructor: Rittschof. 3 units.

255L. **Biochemistry of Marine Animals.** Functional, structural, and evolutionary relationships of biochemical processes of importance to marine organisms. Open to undergraduates only under Biology 155L. Four units (fall and spring); variable credit (summer). (Given at Beaufort.) Prerequisites: Biology 25L; and Chemistry 11L, 12L. Instructor: Rittschof (fall and summer). Variable credit. C-L: see Environment 229L

264S. **Advanced Topics in Marine Ecology.** Theoretical concepts from population, community, and evolutionary ecology will be linked to observations and experiments to enhance understanding of the structure and function of marine systems. Current topics in marine ecology (for example, marine food web dynamics, species interactions, life history strategies, fisheries ecology, conservation biology). Discussions based on readings from the primary literature with emphasis on developing critical and synthetic skills. Each student will prepare a research proposal in NSF format. May be repeated. (Given at Beaufort.) Instructor: Crowder. 2 units. C-L: see Environment 269S

273S. **Current Topics in Environmental Biology.** The biology and societal implications of technological and environmental problems. Impact on human and animal biology of chemical pollution, including food additives, manufacturing and food production by-products. Evaluation of observations and claims in the popular press, and research in primary scientific literature. (Given at Beaufort.) Prerequisite: Introductory Biology. Instructor: Rittschof. 3 units.

274L. **Marine Invertebrate Zoology.** Structure, function, and development of invertebrates collected from estuarine and marine habitats. Not open to students who have taken Biology 176L, Biology 274L, or Zoology 274L. Open to undergraduates only under Biology 176L. Four units (fall, spring, and Summer Term II); six units (Summer Term I). (Given at Beaufort fall, spring, and summer or at Bermuda, spring.) Prerequisite: Biology 25L. Instructors: Dimock (Beaufort) or Kirby-Smith (Beaufort); Wood (Bermuda). Variable credit. C-L: see Environment 295L

295S. **Special Topics Seminar.** Seminar on a selected topic. Offerings vary each semester. Consent of instructor required. Instructor: Staff. 3 units.

297. **Research Independent Study.** Continuation of Biology 191. Individual research and reading of the primary literature in a field of special interest, under the supervision of a faculty member, the major product of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Open to juniors and seniors only with consent of supervising instructor. May be repeated. Instructor: Staff. 3 units.

351. **Tutorial.** Carried out under the direction of the appropriate staff members. Consent of instructor required. Hours and credit to be arranged. Instructor: Staff. Variable credit.

353. **Research.** To be carried on under the direction of the appropriate staff members. Consent of instructor required. Hours and credit to be arranged. Instructor: Staff. Variable credit.
Cell Biology (CELLBIO)

210. Research Independent Study. Individual Research in a field of special interest under the supervision of a faculty member, the central goal of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Consent of instructor required. Instructor: Staff. Variable credit.

Earth and Ocean Sciences (EOS)

Earth and Ocean Sciences (EOS)

113. Modern and Ancient Oceanic Environments. Description of oceanic environments and geological processes that create or modify them through time. Reconstruction of paleoenvironmental/paleoceanographic conditions in the world's oceans using sediments and fossils with emphasis on global climate change over a range of time scales. Inductive interpretations of geological data to construct paleoenvironmental models. Includes field trip. Consent of instructor required. Prerequisite: introductory geology or introductory biology. Instructors: Corliss and staff. 1 unit.

191. Research Independent Study. Individual research in a field of special interest under the supervision of a faculty member, the central goal of which is a substantive paper or written report containing significant analysis and interpretation of a previously approved topic. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

192. Research Independent Study. See Earth and Ocean Sciences 191. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

193. Independent Study. Directed reading or individual projects. Term paper required. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

194. Independent Study. See Earth and Ocean Sciences 193. Term paper required. Open only to qualified juniors and seniors by consent of director of undergraduate studies and supervising instructor. Instructor: Staff. 1 unit.

195. Independent Study for Nonmajors. Individual research and reading in a field of special interest, under the supervision of a faculty member, resulting in a term paper containing significant analysis and interpretation of a previously approved topic at end of semester. Open to qualified juniors and seniors upon approval of the departmental faculty. Instructor: Staff. 1 unit.

202. Beach and Island Geological Processes. Field seminar on the evolution of beaches and barrier islands with emphasis on the interactions between nearshore processes and human development. Prerequisite: Earth and Ocean Sciences 115/215 or consent of instructor. Instructor: Murray and Pilkey. 2 units.

371. Advanced Topics in Geology. To meet the individual needs of graduate students for independent study. Instructor: Staff. Variable credit.
372. Advanced Topics in Geology. To meet the individual needs of graduate students for independent study. Instructor: Staff. Variable credit.

Physics (PHYSICS)

53L. General Physics I. The first part of a two-semester course providing a survey of the principles of physics. Calculus-based course for students planning study in medicine or the life sciences. Topics include: kinematics, dynamics, systems of particles, conservation laws, statics, gravitation, fluids, oscillations, mechanical waves, sound, thermal physics, and the laws of thermodynamics. Students must enroll in a lecture (Physics 53L) and a lab/recitation (Physics 53L9,R) section in order to receive credit for the course. Students planning to major in physics should enroll in Physics 41L, 42L in their freshman year. Closed to students having credit for Physics 41L, 61L or 63L. Prerequisites: Mathematics 31, 32 or 25L, 26L, or equivalent; Mathematics 32 may be taken concurrently with Physics 53L. Instructor: McNairy. 1 unit.

54L. General Physics II. The second part of a two-semester calculus based course providing a survey of the principles of physics for students planning to study medicine or life sciences. Topics include: electrostatic fields and potential, capacitors, DC circuits, magnetic fields, electromagnetic induction, Maxwell's equations, electromagnetic waves, properties of light (including reflection, refraction, polarization), geometric optics, wave optics (interference and diffraction), atomic and nuclear physics. Students must enroll in both a lecture (Physics 54L) and a lab/recitation (Physics 54L9,R) section in order to receive credit for the course. Closed to students having credit for Physics 42L, 62L or 63L. Prerequisites: Physics 41L, 61L, or 53L. Instructor: McNairy and Thomas. 1 unit.

Political Science (POLSCI)

264. Marine Policy (A). Formal study of policy and policy-making concerning the coastal marine environment. History of specific marine-related organizations, legislation, and issues and their effects on local, regional, national, and international arenas. Topics explored through use of theoretical and methodological perspectives, including political science, sociology, and economics. Consent of instructor required. (Given at Beaufort.) Instructor: Orbach. 3 units. C-L: see Environment 276; also C-L: Public Policy Studies 297

Public Policy Studies (PUBPOL)

297. Marine Policy (A). Formal study of policy and policy-making concerning the coastal marine environment. History of specific marine-related organizations, legislation, and issues and their effects on local, regional, national, and international arenas. Topics explored through use of theoretical and methodological perspectives, including political science, sociology, and economics. Consent of instructor required. (Given at Beaufort.) Instructor: Orbach. 3 units. C-L: see Environment 276; also C-L: Political Science 264
Index

A
Academic Calendar 7
Academic Information for Professional Degree Students 48
Academic Irregularities 67
Academic Recognition 32
Academic Regulations 63
Additional Procedures for International Students 52
Administration of the Nicholas School of the Environment and Earth Sciences 5
Admission through the Cooperative Colleges (3-2) Program 52
Admission to the Senior Professional Program 53
Admission with Nondegree Status 53
Admissions 49
Admissions Criteria 50
Advising 30
Alumni Council 6
Application for Awards for the Entering Student 61
Application Procedures 50
Assistantships 61
B
Biology courses taught at the Marine Lab 149
Board of Visitors 6
C
Campus Resources 18
Career Services 68
Career Services 21
Carolina Population Center 17
Cell Biology courses taught at the Marine Lab 154
Center for Comparative Biology of Vulnerable Populations 85
Center for Geospatial Medicine 86
Center for Hydrologic Science 87
Center for Marine Conservation 87
Center for Sustainable Enterprise 17
Center for Tropical Conservation 88
Center on Global Change 86
Children’s Environmental Health Initiative 88
Coastal Environmental Management 37
Coastal Systems Science and Policy (CSSP) 13
Computer Resources 16
Concurrent Degrees 44
Concurrent Degrees with Other Universities 47
Conservation Science and Policy 37
Cooperative University Programs 76
Counseling and Psychological Services (CAPS) 21
Course Planning 63
Courses 64
Courses of Instruction 118
Courses Taught at the Marine Laboratory 143
Courses taught in Durham 119
D
Debts 68
Deferred Admission 53
Disability Access Office 20
Divisions 13
Doctoral Degrees 11
Doctoral Programs 74
Doctoral Study at the Duke University Marine Laboratory 75
Duke Environmental Law and Policy Forum 22
Duke Environmental Leadership (DEL) Program 22
Duke Environmental Leadership courses 132
Duke Environmental Leadership Master of Environmental Management 41
Duke Environmental Leadership Master of Environmental Management 43
Duke Forest 14
Duke University Greening Initiative (DU-GI) 22
Duke University Marine Laboratory 15
E
Earth and Ocean Sciences (EOS) 13
Earth and Ocean Sciences courses taught at the Marine Lab 154
Earth and Ocean Sciences courses taught in Durham 136
Ecosystem Science and Management 38
Eligibility for Financial Assistance 58
Employment Trends and Statistics 71
Energy and Environment 38
Environment courses taught at the Marine Lab 143
Environment courses taught in Durham 119
Environmental Economics and Policy 39
Environmental Health and Security 39
Environmental Sciences and Policy (ESP) 13

F
Facilities 14
Faculty 90
Fellowships and Assistantships for Doctoral Students 77
Fellowships for M.E.M./M.F. Students 58
Fellowships Offered through the Graduate School 78
Fellowships Offered through the Nicholas School 78
Financial Aid 31
Financial Assistance 57
Financial Information 54
Forem 22
Forest History Society 17
Forest Resource Management 41

G
General Administration 5
General Information 10
General Information 10
Global Environmental Change 40
Grades 65
Graduate Plus Loan Information 62
Graduate Professional Degrees 11
Graduate School Registration 77
Graduation 68

H
Harassment Policy 67
History of the Nicholas School 12
Honor Code 67
Housing 18

I
Immunization Requirement 64
International Advisor 21
Internship Funds 69
Internship Opportunities 69

J
Juris Doctor in Environmental Law and Juris Doctor/M.A. Option 46

L
Leave of Absence or Withdrawal 68
Length of Study 68
Libraries 18
Loans 61
Location 13
Location and Natural Environment 15

M
Marine Lab Scholarships 31
Marine Lab Teaching and Research Facilities 16
Marine Laboratory (in Beaufort, NC) 15
Master of Arts in Teaching 46
Master of Business Administration 44
Master of Environmental Management and Master of Forestry 44
Master of Public Policy 45
Medical Care 20

N
National, Regional and Foundation Awards 78
Neighboring Universities 17
Nicholas Institute for Environmental Policy Solutions 80

O
Offers of Admission 53
Organization for Tropical Studies at Duke 18
P
Physics courses taught at the Marine Lab 155
Political Science courses taught at the Marine Lab 155
Professional and Scientific Societies 23
Professional Graduate Degree Programs 34
Professional Masters Degrees 35
Professional Programs 37
Program Requirements 36
Public Policy Studies courses taught at the Marine Lab 155

Q
Qualification of Students 77

R
Reciprocal Agreements with Neighboring Universities 64
Regional Resources 17
Registration 63
Research Assistantships 79
Research Centers 84
Research Triangle Park 17
Research Triangle Park 17

S
Senior Professional Program 43
Services for Students 20
Southern Center for Sustainable Forestry 89
Special Considerations for Ph.D. Students in Resource Economics and Policy 75
Special Tracks for Practicing Professionals 41
Student Activities and Organizations 22
Student Council 23
Student International Discussion Group (SIDG) 23
Student Life 18
Study at the Duke University Marine Laboratory 30
Superfund Basic Research Program 89

T
Teacher Certification 32
Teaching Assistantships 79
The Cooperative College (3-2) Program 44
The Cooperative College (3-2) Program 32
The Distinction between Professional and Doctoral Degrees 35
The Stanback Conservation Internship Program 32
Transcripts of Credit 68
Transcripts of Credit 68
Tuition and Fees 54

U
Undergraduate Degree Programs 24
Undergraduate Degrees 12
University 5
University Program in Ecology (UPE) 76
University Program in Integrated Toxicology (UIT) 76

W
Water and Air Resources 40
Welcome to the Nicholas School 9
Wetland Center 88
Working Group for Environment in Latin America (WGELA) 23
Work-Study 61